SoftTRR: Protect Page Tables against Rowhammer Attacks using Software-only Target Row Refresh

Zhi Zhang*, Yueqiang Cheng*, Minghua Wang, Wei He, Wenhao Wang, Nepal Surya, Yansong Gao, Kang Li, Zhe Wang, Chenggang Wu (*: co-first authors)

Outline

- Background
- Motivation
- Overview
- Evaluation
- Conclusion

Background

What is Rowhammer?

What is Rowhammer ?

Rowhammer:

Frequently accessing

DRAM rows

DRAM bank

A bank has rows of cells

DRAM bank

A bank has rows of cells

A cell has a capacitor and an access-transistor

DRAM Refresh

- * capacitors of cells can lose charge over time
- * cells must be periodically refreshed
- \star the refresh rate is typically 64 ms in DDR3 and DDR4

Rowhammer

Kim et al. (ISCA'14)

frequently opening rows *n+1* & *n-1* cause charge leakage (bit flips) in row *n*

Motivation

Rowhammer Attacks

- Rowhammer-induced page tables corruption is the most detrimental to system security and hard to mitigate (CTA ASPLOS'19)
- > Mainstream rowhammer attacks target level-1 page table corruption

Limitations of the State-of-the-Art Works

Limitations of the State-of-the-Art Works

Practicality

> incurring modifications to kernel memory subsystem.

Limitations of the State-of-the-Art Works

Practicality

incurring modifications to kernel memory subsystem

Effectiveness

being ineffective against all existing rowhammer attacks targeting page tables (e.g., PThammer MICRO'20)

Explicit Rowhammer Attacks

Require access to part of rows adjacent to L1PT rows for explicit hammering

Explicit Rowhammer Attacks

Require access to part of rows adjacent to L1PT rows for explicit hammering

Implicit Rowhammer Attacks

> PThammer, the only instance

Design Principles:

> effective in protecting page tables from explicit and implicit attacks

Design Principles:

- > effective in protecting page tables from explicit and implicit attacks
- compatible with OS kernels

Design Principles:

- > effective in protecting page tables from explicit and implicit attacks
- compatible with OS kernels
- > small performance overhead to a commodity system

Key Insights

DRAM-chip-based TRR (ChipTRR), widely deployed in DDR4 modules.

high-level idea: ChipTRR counts rows' activations and refreshes adjacent rows to suppress bit flips if the activation counts reach a pre-defined limit.

Key Insights

DRAM-chip-based TRR (ChipTRR), widely deployed in DDR4 modules.

- high-level idea: ChipTRR counts rows' activations and refreshes adjacent rows to suppress bit flips if the activation counts reach a pre-defined limit.
- security limitation: ChipTRR only tracks a limited number of rows, which renders its rowhammer-free guarantee broken by TRRespass IEEE 5&P'20.

Key Insights

DRAM-chip-based TRR (ChipTRR), widely deployed in DDR4 modules.

- high-level idea: ChipTRR counts rows' activations and refreshes adjacent rows to suppress bit flips if the activation counts reach a pre-defined limit.
- security limitation: ChipTRR only tracks a limited number of rows, which renders its rowhammer-free guarantee broken by TRRespass IEEE S&P'20.

Software-only TRR (SoftTRR): protects page-table integrity by adopting the above idea while addresses the security limitation by leveraging MMU and OS kernel features.

Memory-access Mediation

Memory-access Mediation

SoftTRR leverages page tables and page-fault handler to frequently trace memory accesses to any rows adjacent to rows hosting page-tables.

In our implementation, SoftTRR focuses on protecting level-1 page tables (L1PTs) that are targeted by both explicit and implicit rowhammer attacks.

- In our implementation, SoftTRR focuses on protecting level-1 page tables (L1PTs) that are targeted by both explicit and implicit rowhammer attacks.
- > Page table collector asks task_struct and hooks L1PT alloc and free functions for page collection
 - ✓ L1PT pages
 - ✓ DRAM-adjacent pages
 - ✓ their DRAM row locations

- In our implementation, SoftTRR focuses on protecting level-1 page tables (L1PTs) that are targeted by both explicit and implicit rowhammer attacks.
- > Page table collector asks task_struct and hooks L1PT alloc and free functions for page collection
 - ✓ L1PT pages
 - ✓ DRAM-adjacent pages
 - ✓ their DRAM row locations
- > DRAM-adjacent page

- In our implementation, SoftTRR focuses on protecting level-1 page tables (L1PTs) that are targeted by both explicit and implicit rowhammer attacks.
- > Page table collector asks task_struct and hooks L1PT alloc and free functions for page collection
 - ✓ L1PT pages
 - ✓ DRAM-adjacent pages
 - ✓ their DRAM row locations
- > DRAM-adjacent page: up to 6-row from a row hosting L1PTs (based on Kim et al. ISCA'20)

- In our implementation, SoftTRR focuses on protecting level-1 page tables (L1PTs) that are targeted by both explicit and implicit rowhammer attacks.
- > Page table collector asks task_struct and hooks L1PT alloc and free functions for page collection
 - ✓ L1PT pages
 - ✓ DRAM-adjacent pages
 - \checkmark their DRAM row locations
- > DRAM-adjacent page: up to 6-row from a row hosting L1PTs (based on Kim et al. ISCA'20)
- > An attacker can explicitly or implicitly hammer an adjacent page
- > Page table collector maintains three red-black trees for the collected information
 - ✓ pt_rbtree
 - ✓ adj_rbtree
 - ✓ pt_row_rbtree

- > Trace memory accesses to adjacent pages
- > Maintain a counter for each page-table row
- \succ Trigger row-refresher when the counter reaches a pre-defined limit, similar to ChipTRR $_{_{36}}$

- > Set-up tracing periodically
- > Determine timer_inr and count_limit

- Set-up tracing periodically
- > Determine timer_inr and count_limit

- Set-up tracing periodically
 - ✓ Configuring *present* bit or *rsrv* bit in leaf PTEs (page table entries) can capture a memory access of *read*, *write* or *instruction fetch*.

- > Set-up tracing periodically
 - ✓ Configuring *present* bit or *rsrv* bit in leaf PTEs (page table entries) can capture a memory access of *read*, *write* or *instruction fetch*.

MMU-supported page-fault error code

present set to 0 corresponds to P bit set to 0

_31							
Reserved							
15		5	4	3	2	1	0
SGX	Reserved	PK	I/D	RSVD	u/s	W/R	Р

0 means that the fault was caused by a non-present page.

1 means that the fault was caused by a page-level protection violation.

0 means that the fault was caused by reserved bit violation.

1 means that the fault was caused by a reserved bit set to 1 in a

page-table entry

MMU-supported page-fault error code

- present set to 0 corresponds to P bit set to 0
- rsrv bit set to 1 corresponds to RSVD bit set to 1

0 means that the fault was caused by a non-present page. 1 means that the fault was caused by a page-level protection violation.

σ

0 means that the fault was caused by reserved bit violation.

1 means that the fault was caused by a reserved bit set to 1 in a page-table entry

- > Set-up tracing periodically
 - ✓ Configuring *present* bit or *rsrv* bit in leaf PTEs (page table entries) can capture memory access of *read*, *write* or *instruction fetch*.
 - ✓ Choose *rsrv* bit as configuring *present* bit causes kernel abort.

- Set-up tracing periodically
- > Determine timer_intr and count_limit
 - threshold = ?

- > Set-up tracing periodically
- > Determine timer_intr and count_limit
 - / threshold = timer_inr × (count_limit 1) and means no bit flip will be caused by hammering

- > Set-up tracing periodically
- > Determine timer_intr and count_limit
 - threshold = timer_inr × (count_limit 1) and means no bit flip will be caused by hammering

 \checkmark A safe threshold is 1 ms (based on Kim et al. ISCA'20)

- > Set-up tracing periodically
- > Determine timer_intr and count_limit
 - threshold = timer_inr × (count_limit 1) and means no bit flip will be caused by hammering
 - $\checkmark\,$ A safe threshold is 1 ms
 - ✓ timer_inr is set to 1 ms and count_limit is set to 2

Row Refresher

- Refresh A Specified Row
 - ✓ A simple read-access to a kernel virtual address can re-charge a specified row and prevent potential bit flips
 - ✓ A kernel virtual address should be mapped to the specified row

Row Refresher

- Refresh A Specified Row
 - A simple read-access to a kernel virtual address can re-charge a corresponding row and prevent potential bit flips
 - \checkmark A kernel virtual address should be mapped to the specified row
- Direct-physical Map
 - \checkmark Linux maps available physical memory into the kernel space
 - A kernel virtual address can be found based on the mapping between a physical address and a DRAM row location, and the direct-physical map

Evaluation

Security Evaluation

Three popular rowhammer attacks target corrupting level-1 page tables:

- > Memory Spray (Blackhat'15): explicitly hammers user memory adjacent to L1PTEs
- > CATTmew (IEEE TDSC'19): explicitly hammers device driver buffer adjacent to L1PTEs
- > Pthammer (MICRO'20): implicitly hammers L1PTEs adjacent to other L1PTEs

Security Evaluation

Three popular rowhammer attacks target corrupting level-1 page tables:

- > Memory Spray (Blackhat'15): explicitly hammers user memory adjacent to L1PTEs
- > CATTmew (IEEE TDSC'19): explicitly hammers device driver buffer adjacent to L1PTEs
- > Pthammer (MICRO'20): implicitly hammers L1PTEs adjacent to other L1PTEs

Machina Model		Hardware Co	nfiguration	Attack	SoftTRR
Machine Mouer	CPU Arch.	CPU Model	DRAM (Part No.)	n Targeted Victim Pages	Bit Flip Failed?
Dell Optiplex 390	KabyLake	i7-7700k	Kingston DDR4 (99P5701-005.A00G)	Memory Spray [46]	~
Dell Optiplex 990	SandyBridge	i5-2400	Samsung DDR3 (M378B5273DH0-CH9)	CATTmew [13]	1
Thinkpad X230	IvyBridge	i5-3230M	Samsung DDR3 (M471B5273DH0-CH9)	PThammer [62]	~
					E0

n = 50

Performance Evaluation

Three representative benchmarks:

- SPECspeed 2017 Integer: CPU-focused
- memcached: memory-focused
- > Phoronix test suite: system as a whole

Performance Evaluation

Three representative benchmarks:

- SPECspeed 2017 Integer: CPU-focused
- memcached: memory-focused
- > Phoronix test suite: system as a whole

Runtime overhead on benchmarks in two scenarios:

- $\succ \Delta \pm 1$: where an adjacent row is only 1-row from a row hosting level-1 page tables.
- > Δ ±6: where an adjacent row is up to 6-row from a row hosting level-1 page tables.

Runtime Overhead

Bonchmarks	Drograms	SoftTRR Overhead		
Deneminarks	Figrans	$\Delta_{\pm 1}$	$\Delta_{\pm 6}$ (default)	
	perlbench_s	0.67%	0.67%	
	gcc_s	0.23%	0.92%	
	mcf_s	-0.76%	0.30%	
	omnetpp_s	-0.81%	1.82%	
	xalancbmk_s	0.36%	2.50%	
SPECspeed 2017 Integer	x264_s	0.00%	0.61%	
	deepsjeng_s	0.00%	0.28%	
	leela_s	0.23%	0.46%	
	exchange2_s	-0.70%	-0.23%	
	xz_s	1.48%	0.93%	
	Mean	0.07%	0.83%	
	Apache	-0.16%	0.32%	
	unpack-linux	1.31%	1.84%	
	iozone	0.89%	-1.15%	
	postmark	0.89%	0.00%	
	stream:Copy	0.01%	0.00%	
	stream:Scale	0.60%	0.23%	
	stream:Triad	0.07%	0.37%	
	stream:Add	0.03%	0.35%	
Dhamanin	compress-7zip	1.52%	2.24%	
Phoronix	openssl	0.14%	0.13%	
	pybench	0.00%	0.52%	
	phpbench	0.92%	0.01%	
	cacheben:read	-0.38%	0.26%	
	cacheben:write	-0.26%	-0.44%	
	cacheben:modify	-0.01%	0.67%	
	ramspeed:INT	-0.09%	-0.63%	
	ramspeed:FP	-0.15%	-0.63%	
	Mean	0.22%	0.24%	
	Statistics			
memcached	Ops	0.39%	0.18%	
memcacheu	TPS	0.39%	0.15%	
	Net_rate	0.46%	0.31%	

Runtime Memory Consumption

- > In a LAMP (Linux, Apache, MySQL and PHP) system with SoftTRR deployed
- > Nikto stresses the LAMP system from another machine

Runtime Memory Consumption

- > In a LAMP (Linux, Apache, MySQL and PHP) system with SoftTRR deployed
- > Nikto stresses the LAMP system from another machine

System Robustness

Linux Test Project		Vanilla System	SoftTRR		
		vannia System	$\Delta_{\pm 1}$	$\Delta_{\pm 6}$ (default)	
	open	~	~	~	
File	close	~	~	~	
I HC	ftruncate	~	~	~	
	rename	~	~	~	
	Listen	~	~	~	
Network	Socket	~	~	~	
THEEWOIR	Send	~	~	~	
	Recv	~	~	~	
	mmap	~	~	~	
	munmap	~	~	~	
Memory	brk	~	~	~	
	mlock	~	~	~	
	munlock	~	~	~	
	mremap	~	~	~	
	getpid	~	~	~	
Process	exit	~	~	~	
	clone	~	~	~	
	ioctl	~	~	~	
Misc.	prctl	~	~	~	
	vhangup	~	~	~	

✓ the stress test does not report any problem

Conclusion

★ SoftTRR is a more effective and practical software-only mitigation,
Compared to existing works

★ In its implementation, SoftTRR works as a loadable kernel module to defend against rowhammer attacks on L1PT pages. SoftTRR leverages MMU and OS kernel features to collect L1PT pages, track memory access, and refresh target L1PT pages

* SoftTRR is evaluated to be effective against 3 representative rowhammer attacks and incur small overhead and memory footprints

Thanks & Questions?