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Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.
– Intel MPK changes permissions of pages.

But they are not efficient enough as we expect.



Threat Model

• We consider a defense that protects a vulnerable application against 
memory corruption attacks.
– Web servers, databases or browsers.

• The design of this defense is secure:
– Breaking memory isolation is a prerequisite for compromising the defense (e.g., 

attackers cannot hijack the control flow before it).

• Attackers’ capabilities:
– Arbitrary read and write by exploiting memory corruption vulnerabilities.
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Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

The user-mode hardware features are not fast.

How about the privileged hardware feature ?

Is there a privileged hardware feature which is more 
efficient than Intel MPX/MPK for the memory isolation ???
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• To prevent the kernel from inadvertently 
accessing malicious data in user space,
– dereferencing a corrupted data pointer

• Intel and AMD provide the Supervisor-
mode Access Prevention (SMAP) 
hardware feature to disable the kernel 
access to the user space memory.
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• X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
– When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

• POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
– popfq could be execute in S-mode (ring 0-2).
– stac/clac are privileged instructions that can only be execute in ring 0. 

Instructions Cycles Description
wrpkru 18.9 Update the access right of a pkey in Intel MPK
popfq 22.4 Pop stack into the RFLAGS register.
stac/clac 8.6 Set/Clear the AC flag in the RFLAGS register.

Intel SMAP is more efficient than Intel MPK for controlling memory access permission.
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• Problem:
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• Our Solution —— Placing the OS kernel in “ring -1”.
– Using the Intel VT-x technique to separate the target application and the OS kernel
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• C-1: Distinguishing SMAP reads and writes.
– Sensitive data may require only integrity protection.
– Preventing reads from untrusted code can lead to unnecessary overhead.

• C-2: Preventing the leaking/manipulating of the privileged data structures.
– In general, a guest VM needs to manage the memory, interrupts, exceptions, etc. 
– Some data structures are privileged, e.g., the page tables.

• C-3: Preventing the abusing of the privileged hardware features.
– Besides the stac/clac, other privileged instructions can also run in ring 0.
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• C-1: Distinguishing SMAP reads and writes.

• Solution —— The shared-memory based read/write separation method.
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• C-2: Preventing the leaking/manipulating of the privileged data structures.

• Observation: 
– The operations to these structures are only performed when the process accesses

the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

• Solution:
– Placing the privileged data structures and their operations into the VMX root mode.
– We leverage the Intel VT-x technique to force all these events to trigger VM exits 

and enter into the VMX root mode.
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• C-3: Preventing the abusing of the privileged hardware features.

• Solution:
– SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Triggering the VM exits and stopping the execution; 

Invalidating the execution effects;

Raising processor exceptions and disabling the execution.
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• The core of SEIMI is a kernel module, includes three key components.

Memory Management Component
– Configures the regular/isolated memory region.

Privileged Instructions Prevention Component
– Prevents these instructions from being abused.

Events Redirection Component
– Handles system calls, interrupts, exceptions, and Linux signals.

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
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• A shadow mechanism for (only) page-table root.
– The guest/host page-tables share the last three-level page table entries.
– Flipping the U/S bit to set the U-page and S-page neatly.
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#255 0.5 Isolated Memory U-page

#255 ~ #511 128.0 Kernel Space NULL
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• Support the read-only isolated S-page memory region.
– Flipping the R/W bit to set the read-only permission neatly.
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• We identify all privileged instructions and the instructions that will change the 
behaviors in different rings in the 64-Bit mode of X86_64.

• Our identification method:

Automated filtering 
– We embed each instruction with 

random operands into a test program 
and run it in ring 3. 

– By capturing the #GP and the #UD, we 
automatically and completely filter all 
privileged instructions.

Manual Verification
– We manually review the description 

of all X86 instructions by reading the 
Intel Software Developers’ Manual. 

– Confirm the first step is complete, 
and also find the instructions that 
behave differently in ring 0 and ring 3.
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Line Detailed Instructions Is Privileged 
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y
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Triggering VM Exit and Stopping Execution.
• Using the Intel VT-x technique to configure 

the VM exits directly.

Invalidating the Execution Effects. 
• The execution does not change any state.
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– We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
– xsaves, xrstors, invpcid … via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception)
– sysexit, sysret…due to the S-page setting in all code pages.

Raising the #GP (general protection exception) 
– Segment-switching related instructions: mov to %ds, lcall…
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• Problem:
– Intel VT-x cannot intercept these instructions that could change the segment.

How to intercept this type of instructions ???
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• Observation
– When changing a segment register, the hardware will use the target selector to 

access the segment descriptor table to obtain the target segment information.
– If the segment descriptor table is empty, the CPU will raise a general protection 

exception (#GP) in this process.

• Solution —— Emptying out this table to intercept such instructions.

• Problem:
– How to ensure the normal execution (segment addressing)?
– How to ensure the correct functionality of the segment-switching instructions?



SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

Selector



LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx 

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

Selector



LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx 

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction 
will load the information into 
the descriptor cache.



LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx 

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction 
will load the information into 
the descriptor cache.



LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx 

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction 
will load the information into 
the descriptor cache.

Filling the correct information into 
the cache via configuring the VMCS.



LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx 

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base,  Limit,  Access
%ds: Visible Part Hidden Part
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…
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Segment-switching instruction 
will load the information into 
the descriptor cache.

Filling the correct information into 
the cache via configuring the VMCS.
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SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base,  Limit,  Access
%ds: Visible Part Hidden Part

VMCS

Base, Limit, Access

CS/SS/DS...GS:
Guest

Selector

…
②

mov to %ds
①

Selector
Segment-switching instruction 
will load the information into 
the descriptor cache.

Filling the correct information into 
the cache via configuring the VMCS.

At last, emptying 
out the segment 
descriptor table.

Emulating the function of the normal 
segment-switching instructions.
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Invalidating the Execution Effects. 
– We invalidate their execution effects, thus preventing attackers from using these 

instructions to obtain information or change any state.

• CR0/CR4-related instructions.
– Configure guest/host masks and read shadows in VMCS.
– The value of the %CR0/%CR4 read is all 0. 
– Write to them does not really modify the values;

• SWAPGS, L[AR/SL], VER[R/W], CLI/STI …
– More details are in the paper.



SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.



SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.



SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.

• Interrupts and Exceptions Handling
– All these events trigger the VM exit via configuring the VMCS.
– The kernel module checks the call gates and vectors the IDT.



SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.

• Interrupts and Exceptions Handling
– All these events trigger the VM exit via configuring the VMCS.
– The kernel module checks the call gates and vectors the IDT.

• Linux Signal Handling
– Check the signal queue, and switch the context via configuring the VMCS.



SEIMI —— Some Implementations

• Memory Management Implementations
– Avoiding overlaps in the 254th and 255th entries.
– Handling the VSYSCALL page.
– Tracking updates of the PML4 page.
– Avoiding accessing the kernel by exploiting the TLB.

• Other Implementations
– Hardening system calls against confused deputy.
– Starting and exiting the target process.

– Supporting multi-threading and multi-processes.
– Defeating the concurrent attacks.
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• Defenses and Isolation Schemes: 
– Defenses: O-CFI, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)

– Isolation:  IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

• Microbenchmark —— the overheads imposed by SEIMI on kernel operations.
– lmbench v3.0-a9

• Macrobenchmark —— the overheads on different isolation schemes.
– SPEC CPU2006 C/C++ benchmark with the ref input.

• Real-world applications:
– 4 Web servers:             Nginx, Apache, Lighttpd, and Openlitespeed.
– 4 Databases:                 MySQL, SQLite, Redis, and Memcached.

– 4 JavaScript engines: ChakraCore, Google V8, JavaScriptCore, SpiderMonkey. 
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Microbenchmark —— lmbench

Latency on process-related kernel operations 
(in μs): smaller is better. Context-switching latency (in μs): smaller is better.

File & VM system latency (in μs): smaller is 
better. 

Local-communication latency (in μs): smaller 
is better.

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.
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• Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead 
on average, with the average reduction of 33.97%.

• Compared to the MPK-based scheme, SEIMI is more efficient in almost all test cases, 
and with the average reduction of 42.3% (maximum is 133.33%).
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on performance of MPK and SEIMI.

Compared to MPK, as the access 
permission switching frequency 
increases, the performance gain of 
SEIMI becomes more apparent.

• Performance Analysis:  MPK vs. SEIMI
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Macrobenchmark —— SPEC CPU 2006 benchmark

The impact of bound-checking frequency (CFreq) and 
permission-switching frequency (SFreq) on performance.

When the bound-checking
frequency is 52 times of the access 
permission switching frequency, 
SEIMI is more efficient than MPX in 
most cases.

• Performance Analysis:  MPX vs. SEIMI
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Real-world Applications

• SEIMI is more performant than MPX-based and MPK-based schemes on 
protecting the real-world applications.
– SEIMI is much more efficient than MPK for all 32 cases.
– SEIMI is much more efficient than MPX for 28 cases. 

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.



Conclusion

• We propose a highly efficient intra-process memory isolation technique 
SEIMI, which leverages the widely used hardware feature — SMAP.

• To avoid introducing security threats, we propose multiple new techniques 
to ensure the user code run in ring 0 securely. 

• We believe that SEIMI can not only benefit existing defenses, but also open 
the new research direction …
– Enabling the efficient access to a variety of privileged hardware features, which does 

not require context switch, to defenses.



Any Questions ?

wangzhe12@ict.ac.cn
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