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IThreat Model

* We consider a defense that protects a vulnerable application against
memory corruption attacks.

— Web servers, databases or browsers.

* The design of this defense is secure:

— Breaking memory isolation is a prerequisite for compromising the defense (e.g.,
attackers cannot hijack the control flow before it).

* Attackers’ capabilities:
— Arbitrary read and write by exploiting memory corruption vulnerabilities.
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* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.

{1

&Y} The user-mode hardware features are not fast.

How about the privileged hardware feature ?

- -—

Is there a privileged hardware feature which is more
efficient than Intel MPX/MPK for the memory isolation 22?2
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* To prevent the kernel from inadvertently
accessing malicious data in user space,

— dereferencing a corrupted data pointer

* Intel and AMD provide the Supervisor-
mode Access Prevention (SMAP)
hardware feature to disable the kernel
access to the user space memory.
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* The Memory Layout Setting
— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.

* The Running State Setting
— The process runs in ring 0, due to the stac/clac are privileged instructions.

, Heap (RW) , Stack (RW)2 Code (RX) , RW _,
Ring 0 [ S|s S|S S|S- Uy ]
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I High-level Design

* Problem:
— Running untrusted code in ring 0 may corrupt the OS kernel.

* Our Solution Placing the OS kernel in “ring -1”.
— Using the Intel VT-x technique to separate the target application and the OS kernel

Target Process OS Kernel

VM Entry

Intel VT-x

VM Exit

~
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* C-1: Distinguishing SMAP reads and writes.
— Sensitive data may require only integrity protection.

I High-level Design

— Preventing reads from untrusted code can lead to unnecessary overhead.

* C-2: Preventing the leaking/manipulating of the privileged data structures.
— In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
— Some data structures are privileged, e.g., the page tables.

* (C-3: Preventing the abusing of the privileged hardware features.
— Besides the stac/clac, other privileged instructions can also run in ring o.
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* C-2: Preventing the leaking/manipulating of the privileged data structures.

e Observation:

— The operations to these structures are only performed when the process accesses
the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

N

e Solution: \Ql

— Placing the privileged data structures and their operations into the VMX root mode.

— We leverage the Intel VT-x technique to force all these events to trigger VM exits
and enter into the VMX root mode.
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I Approaches Overview Challenge-3

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution:
— SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

| Triggering the VM exits and stopping the execution;

Po?

4 Invalidating the execution effects;

1 Raising processor exceptions and disabling the execution.
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is implemented on Linux/X86 64 platform.
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Kernel Module

Compiler

library.a OS Kernel
HW(VMX root, Ring 0)

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

Runtime Phase

The core of SEIMI is a kernel module which monitors

the startup of the target application and places it into
ring o of the VMX non-root mode.
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I SEIMI Compilation Phase

provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

@ API Description

void *sa_alloc(size_t length, Allocate an 1solated U-page region at
/ y bool need_ro, the page granularity. If specified, it also
_ & | e—

long *offset): allocates a shared isolated S-page region.

size_L !'E.Hgﬁ.’]; with the specified length.

E v bool sa_free(void *addr, Free an isolated U-page region
7

\S\ouﬂﬂ Llw‘ Q\  #define SWITCH_IN \ Disable SMAP—access the

asm("stac\n"): isolated U-page region is allowed.

#define SWITCH_OUT \ Enable SMAP—access to the

Compllatlon phase asm("clac\n"); isolated U-page region is denied.
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SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.

J Memory Management Component

Target Process Other Processes
— Configures the regular/isolated memory region. HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
N N
User_ | _ .
Kernel

A4

J Privileged Instructions Prevention Component @ Kernel Module

— Prevents these instructions from being abused. 0S Kernel

HW(VMX root, Ring 0)

Runtime Phase
J Events Redirection Component

— Handles system calls, interrupts, exceptions, and Linux signals.
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— The guest/host page-tables share the last three-level page table entries.
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A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page table entries.

P
— Flipping the U/S bit to set the U-page and S-page neatly. :_.:

Page Page 4KB
PMLA PDPT Directory Table Page
Wk ;
#255 User-
#256| S Page . . . e 2
Entris in PML4 | Size(TB)

16 2M 4K #0 ~ #254 127.5 Regular Memory  S-page

#511| S

— #2585 0.5 Isolated Memory  U-page
* #0—#254 entries only I :
change the U/S bit. Isuper|

. i 1
#255 « #256—#511  entries | VIS0,

#o

#255 ~ #511 128.0 Kernel Space NULL

only change the P bit. : Page |
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* Support the read-only isolated S-page memory region.
C g
— Flipping the R/W bit to set the read-only permission neatly. :_.:

Host CR3 Page Page 4KB
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* Support the read-only isolated S-page memory region.
N
— Flipping the R/W bit to set the read-only permission neatly. :_.°
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PML4 PDPT Directory Table Page

#0
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* Support the read-only isolated S-page memory region.

— Flipping the R/W bit to set the read-only permission neatly. .
Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page
#0
#255 User-
#256( S Page
onbS Entries in PML4 | Size(TB)
"B 16 #0 ~ #253 127 Regular Memory  S-page
Set the Read-only Regi
PMLA’ +"The R/W bit of the #254 #254 0.5 Isolated Memory  S-page
entry is set to 0.
_____ 1 e | #255 0.5 lIsolated Memory  U-page
:223.5_: Is\;‘”‘-’d #255 ~ #511 128 Kernel Space NULL
emory Set the Shared Memory
NULL * The #254 and the #255
#511 reference the same PDPT.
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry




ISEIMI Privileged Instruction Prevention Component

* We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.



ISEIMI Privileged Instruction Prevention Component

* We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.

 Quridentification method:

&) Automated filtering

—  We embed each instruction with
random operands into a test program
and run it in ring 3.

— By capturing the #GP and the #UD, we
automatically and completely filter all
privileged instructions.




ISEIMI Privileged Instruction Prevention Component

We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.

 Quridentification method:

&) Automated filtering ¢ Manual Verification
—  We embed each instruction with —  We manually review the description
random operands into a test program of all X86 instructions by reading the
and runitin ring 3. Intel Software Developers’ Manual.
— By capturing the #GP and the #UD, we — Confirm the first step is complete,
automatically and completely filter all and also find the instructions that
privileged instructions. behave differently in ring 0 and ring 3.




ISEIMI Privileged Instruction Prevention Component

* We group them into 20 categories based on their different functionality. %



ISEIMI

* We group them into 20 categories based on their different functionality.
Is Privileged

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME]READ]WRITE]... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT
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Execution.
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Po?
Raising the Execution Exception. e]j%}

— We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)

— Xsaves, xrstors, invpcid ... via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception) «

— sysexit, sysret... due to the S-page setting in all code pages.

Raising the #GP (general protection exception) @

— Segment-switching related instructions: mov to %ds, Icall...
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* Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

* Problem:
— Intel VT-x cannot intercept these instructions that could change the segment. &

—~ ) How to intercept this type of instructions 222
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e Observation

— When changing a segment register, the hardware will use the target selector to
access the segment descriptor table to obtain the target segment information.

— If the segment descriptor table is empty, the CPU will raise a general protection
exception (#GP) in this process.

\Q’Solution Emptying out this table to intercept such instructions.

* Problem:
— How to ensure the normal execution (segment addressing)?
— How to ensure the correct functionality of the segment-switching instructions?
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* Segment-switching exception using descriptor cache.
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I
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A

mov %ds:(%rax), %rbx

Segment-switching instruction
will load the information into
the descriptor cache.
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* Segment-switching exception using descriptor cache.

— X386 allows the descriptor cache to be inconsistent with the descriptor table.
VMCS

Guest

CS/SS/DS...GS:

Filling the correct information into
the cache via configuring the VMCS.

mov to Zds \

-
ON

Segment-switching instruction
j will load the information into

,/  the descriptor cache.

7~

Selector |
Base, Limit, Access @) T~ -
N
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR
I
— GDT f LDT
LDT Descriptor Base,Limit,Accessf—
A

mov %ds:(%rax), %rbx
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Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

At last, emptying
out the segment
descriptor table.

VMCS
Guest Filling the correct information into
CS/SS/DS...GS: the cache via configuring the VMCS.
Selector |
Base, Limit, Access @ T~
N
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access <®\
oq)  Segment-switching instruction
mov to %ds
GDTR IIDTR ) will load the information into
—> GDT LDT ,/  the descriptor cache.
LDT Descriptor Base,Limit,Access—~
7Y

mov %ds:(%rax), %rbx
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Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

At last, emptying
out the segment
descriptor table.

VMCS
Guest Filling the correct information into
CS/SS/DS...GS: the cache via configuring the VMCS.
Selector |
Base, Limit, Access @“ T~ Emulating the function of the normal
\\ segment-switching instructions.
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access <®\
oq)  Segment-switching instruction
mov to %ds
GDTR IIDTR ) will load the information into
—> GDT LDT ,/  the descriptor cache.
LDT Descriptor Base,Limit,Access—~
7

mov %ds:(%rax), %rbx
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Pe?
Invalidating the Execution Effects. e]j%}

— We invalidate their execution effects, thus preventing attackers from using these
instructions to obtain information or change any state.

 CRO/CR4-related instructions.
— Configure guest/host masks and read shadows in VMCS.
— The value of the %CR0o/%CR4 read is all o.
— Write to them does not really modify the values;

 SWAPGS, L[AR/SL], VER[R/W], CLI/STI ...
— More details are in the paper.Q_
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* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* The lA32 LSTAR MSR register in guest points to this page.

— The kernel module vectors the system call table and calls the handlers.

* Interrupts and Exceptions Handling
— All these events trigger the VM exit via configuring the VMCS.
— The kernel module checks the call gates and vectors the IDT.

* Linux Signal Handling
— Check the signal queue, and switch the context via configuring the VMCS.



SEIMI ome Implementations

* Memory Management Implementations
— Avoiding overlaps in the 254th and 255th entries.
— Handling the VSYSCALL page.
— Tracking updates of the PML4 page.
— Avoiding accessing the kernel by exploiting the TLB.

* Other Implementations
— Hardening system calls against confused deputy.
— Starting and exiting the target process.
— Supporting multi-threading and multi-processes.
— Defeating the concurrent attacks.

SEIMI: Efficient and Secure SMAP-Enabled
Intra-process Memory Isolation

Zhe Wang"? Chenggang Wu? Mengyao Xie? Yingian Zhang® Kangjie Lu*
Xiaofeng Zhang!2 Yuanming Lai’? Yan Kang! Min Yang®

! State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences,
2 University of Chinese Academy of Sciences, * The Ohio State University, * University of Minnesota, ®Fudan University

Abstract—Memory-corruption attacks such as code-reuse at-
tacks and data-only attacks have been a key threat to systems
security. To counter these threats, researchers have proposed a
variety of defenses, including control-flow integrity (CFI), code-
pointer integrity (CPI), and code (re-)randomization. All of
them, to be effective, require a seci il
protection of confidentiality and/o
(such as CFI’s shadow stack and CPI’s safe region).

In this paper, we propose SEIMI, a highly ef
process memory j ique for memory-corruption de-
fenses to prof ata. The core of SEIMI is
to use the Access Prevention (SMAP),
used for preventing the
to achieve intra-process
CIMI creatively executes
addition to enabling the
isolation, we further
develop m secure escalation of
user code, e. apture the potential

segment opers tual Machine Control
Structure (VMCS] he result of the control
registers related operations. Extent atal results show

that SEIMI outperforms existing isol sms, including
both the Memory Protection Keys (Vi scheme and
the Memory Protection ensions (MPXS scheme, while

providing secure memory isolation.

I. INTRODUCTION

Memory-corruption attacks such as control-flow hijacking
and data-only attacks have been a major threat to sy
y in the past decades. To defend against such attacks,
researchers have proposed a variety of advanced mechanisms,
including enhanced control-flow integrity (CFI), code-pointer
integrity (CPI), fine-grained code (re-)randomization, and data-
layout randomization. All these techniques require a security
primitive—effective intra-process memory protection of the
integrity and/or confidentiality of sensitive data from potentially
compromised code. The sensitive data includes critical data
structures that are frequently checked against or used for
protection. For example. O-CFI [39] uses a bounds lookup
table (BLT), and CCFIR [58] uses a safe SpringBoard to
restrict the control flow: CPI [31] uses a safe region. and
Shuffler [55] uses a code-pointer table to protect the sensitive
pointers: Oxymoron [6] maintains a sensitive translation table.
and Isomeron [19] uses a table to protect randomization secrets.

securs

The effectiveness of all such techniques heavily depends on
the inte and/or confidentiality of the sensitive data.

To efficiently protect sensitive data, researchers proposed
information hiding (IH) which stores sensitive data in a memory
region allocated in a random address and wishes that attackers
could not know the random address thus could not write or
read the sensitive data. Unfortunately, recent works show that
memory disclosures and side channels can be exploited to

readily reduce the randomization entropy and thus to bypass
the information hiding [22-24. 36, 41]. As such, even a robust
IH-based defense can be defeated.

To address this problem, recent re:

arch instead opts for
practical memory isolation which provides efficient protection
with a stronger security guarantee. Memory isolation, in general,
can be classified into add) based isolation and dc in-based
isolation. Address-based isolation checks (e.g.. bound-check)

each memory access from untrusted code to ensure that it
cannot access the sensitive data. The main overhead of this
method is brought by the code that performs the checks. The
most efficient address-based isolation is based on Intel Memory
Protection Extensions (MPX), which performs bound-checking
with hardware support [30].

Domain-based isolation instead stores sensitive data in
a protected memory region. The permission to accessing
this region is granted when requested by the trusted code,

and is revoked when the trusted access finished. However,
memory accesses from untrusted code (i.e., the potentially
kers) cannot
enable the permission. The main source of the performance

vulnerable code that can be compromised by atta

overhead of domain-based memory isolation is the operations
for enabling and disabling the memor s permissions. The
most efficient domain-based isolation is to use Intel Memory
Protection Keys (MPK) [25, 30, 40, 47].

In general, existing address-based isolation and domain-
based isolation both incur non-trivial performance overhead
compared to the IH-based scheme. Worse, the overhead will be
significantly elevated when the workloads (i.c., the frequency
of memory accesses that require bound-checking or permission
switching) increase. For example, when protecting the shadow
stack, the MPK-based scheme (i.e., domain-based) incurs a
runtime overhead of 61.18% [40]. When protecting the safe
region of CPI using the MPX-based scheme (i.
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I Performance Evaluation °

* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes
* Microbenchmark
— Imbench v3.0-a9

the overheads imposed by SEIMI on kernel operations.

e Macrobenchmark the overheads on different isolation schemes.
— SPEC CPU2006 C/C++ benchmark with the ref input.

* Real-world applications:

— 4 Web servers: Nginx, Apache, Lighttpd, and Openlitespeed.
— 4 Databases: MySQL, SQLite, Redis, and Memcached.

— 4 JavaScript engines: ChakraCore, Google V8, JavaScriptCore, SpiderMonkey.
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* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

null null open select signal signal fork exec  sh
call I/O stat close TCP install handle proc proc proc

Config

Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 o6.11 0.79 3.02 463 1029 2368
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J Latency on process-related kernel operations
(in us): smaller is better.
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Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

) null  null open select signal signal fork exec  sh Config 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Config call I/O stat close TCP install handle proc proc proc '
Native 021 026 057 123 535 027 099 355 870 2162 I;EIIWMGI 3'22 g'gg 3;} ?61:1% }i'é 181'432 }ég
SEIMI  |0.71 0.82 1.33 258 6.11 079 3.02 463 1029 2368 - A 3. - : - :
SlOWdOWIl‘ZAX 2.2X 1.3X 1.1X 14% 19X 21X 304% 18.3% 9.5% 20.0% 189% 16.1% 242% 21.3% 36.7% 26.2%

1

(in us): smaller is better.

Latency on process-related kernel operations
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I Microbenchmark

Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

] null null open select signal signal fork exec  sh
Config call I/O stat close TCP install handle proc proc proc
Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 6.11 0.79 3.02 463 1029 2368
Slowdown [2.4X 22X 1.3X LIX 14% 1.9X 21X 30.4% 18.3% 9.5%

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Native 205 206 3.1 813 122 843 126
SEIMI | 246 245 36 101 148 11.52 159
Slowdown |20.0% 18.9% 16.1% 242% 213% 36.7% 26.2%

1

(in us): smaller is better.

Latency on process-related kernel operations

Mmap Prot Page 100fd

OK File 10K File
Config Create Delete Create Delete Latency Fault Fault select
Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 5.3421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowd0wn|27.2% 11.7% 33.0% 12.6%

84.4% 63.2% 33.6% 67.8%

3

better.

File & VM system latency (in us): smaller is

J Context-switching latency (in us): smaller is better.
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* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Native 2.05 2.06 3.1 8.13 12.2 8.43 12.6
SEIMI 246 245 3.6 10.1 14.8 11.52 15.9

null null open select signal signal fork exec  sh
call I/O stat close TCP install handle proc proc proc

Config

Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 o6.11 0.79 3.02 463 1029 2368

1
1
1
1
1
1
1
1
Slowdown [2.4X 2.2X 1.3X 11X 14% 19X 21X 304% 18.3% 9.5% | ,  Slowdown|20.0% 18.9% 16.1% 24.2% 21.3% 36.7%  262%
1
1
1
1
1
1
1

J Latency on process-related kernel operations

(in ps): smaller is better J Context-switching latency (in us): smaller is better.

Pipe AF UDP RPC/ TCP RPC/ TCP
Config UNIX UDP TCP conn

Native 5582 92 9883 149 139 176 22
SEIMI 7428 11.7 11.7 20 176 239 24

Slowdown|33.l% 27.2% 18.4% 34.2% 26.6% 35.8% 9.1%

OK File 10K File Mmap Prot Page 100fd
Config Create Delete Create Delete Latency Fault Fault select

Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 53421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowdown | 27.2% 11.7% 33.0% 12.6% 84.4% 63.2% 33.6% 67.8%

J File & VM system latency (in us): smaller is
better.

J Local-communication latency (in us): smaller
is better.



I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%
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I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%.

* Compared to the MPK-based scheme, SEIMI is more efficient in almost all test cases,
and with the average reduction of 42.3% (maximum is 133.33%).
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* Performance Analysis: MPK vs. SEIMI
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* Performance Analysis: MPK vs. SEIMI
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* Performance Analysis: MPX vs. SEIMI
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I Real-world Applications

* SEIMI is more
protecting the real-world applications.

than ViPX-based and VIPK-based schemes on

OCFI | CPI AG
Applications IH MPX  MPK SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
Lighttpd 294%  342%  574%  4.46% | 277%  685%  633%  378% | 1.70% 6.83% 3.42% = 2.46% — — — —
Openlitespeed | 1.44%  539%  388%  1.61% | 1.04%  1.92%  339%  142% | 091% 2.89% 2.99%  1.38% — — — —
MySQL 1.75%  12.09%  8.08%  379% | 3.17%  9.60% 11.99%  3.94% — — — — — — — —
SQLite 1.61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 13.12% 10.31% | 118%  281%  536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  746%  274% | 238%  557%  8.13%  3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  792% 10.09% = 5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  8.01%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 22.87%  39.65% 2681% | 20.69% 3834% 47.77%  31.82% — — — — — — — —
SpiderMonkey | 1.75%  932%  7.63%  4.15% | 184%  756%  7179%  5.19% — — — — — — — —

All overheads are normalized to the unprotected applications. “—

”’ represents the defense failed to compile or runit.
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— SEIMI is much more efficient than MPK for all 32 cases.
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Real-world Applications

* SEIMI is more than VIPX-based and VIPK-based schemes on
protecting the real-world applications.

— SEIMI is much more efficient than MPK for all 32 cases.
— SEIMI is much more efficient than MIPX for 28 cases.

| OCFI | SS | CPI | AG
Applications 1y MpX  MPK  SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI| IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
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SQLite 1.61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 13.12% 10.31% | 118%  281%  536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  746%  274% | 238%  557%  8.13%  3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  7.92% 10.09%  5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  8.01%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 22.87%  39.65% 2681% | 20.69% 3834% 47.77%  31.82% — — — — — — — —
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All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.



I Conclusion @

We propose a highly efficient intra-process memory isolation technique
SEIMI, which leverages the widely used hardware feature — SMAP.

To avoid introducing security threats, we propose multiple new techniques
to ensure the user code run in ring 0 securely.

We believe that SEIMI can not only benefit existing defenses, but also open
the new research direction ...

— Enabling the efficient access to a variety of privileged hardware features, which does

not require context switch, to defenses.



IAny Questions ?
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