SEIMI: Efficient and Secure SMAP-Enabled
Intra-process Memory Isolation

'-i-‘ Zhe Wang', Chenggang Wu', Mengyao Xie', Yingian Zhang?, Kangjie Lu3,
Xiaofeng Zhang', Yuanming Lai’, Yan Kang', and Min Yang#

'Institute of Computing Technology, Chinese Academy of Sciences,

2The Ohio State University, 3University of Minnesota at Twin-Cities, 4Fudan University

cp o AN &




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...



I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A



I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. &

* The strict memory isolations for the metadata in defenses are needed.



I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. &

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.



I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. &

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

Isolated
Memory




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

Isolated
Memory




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

Isolated

CHECK(ptr) Mmooty




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

Isolated

CHECK(ptr) Mmooty




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. &

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.
— Intel MPK changes permissions of pages.

Isolated
Memory




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

— Intel MPK changes permissions of pages.
| *ptr

Isolated
Memory




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. A

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.

— Intel MPK changes permissions of pages.
|

*ptr

Readable/Writable

*ptr

Readable/Writable

*ptr

Isolated
Memory

|
~S ~S




I Intra-process Memory Isolation

* Memory corruption defenses need to keep their metadata safe.
— The safe region in CPI, the shadow stack in CFl, the randomization secretsin ...
— The software-based randomization method has been proven to be vulnerable. &

* The strict memory isolations for the metadata in defenses are needed.
— Intel MPX uses bounds checks for isolation.
— Intel MPK changes permissions of pages.



IThreat Model

* We consider a defense that protects a vulnerable application against
memory corruption attacks.

— Web servers, databases or browsers.

* The design of this defense is secure:

— Breaking memory isolation is a prerequisite for compromising the defense (e.g.,
attackers cannot hijack the control flow before it).

* Attackers’ capabilities:
— Arbitrary read and write by exploiting memory corruption vulnerabilities.



I Outline

5

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation



I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.



I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.



I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.

L

2\(?} The user-mode hardware features are not fast.




I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.

{1

&Y} The user-mode hardware features are not fast.

How about the privileged hardware feature ?

-~ -—



I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.

{1

&Y} The user-mode hardware features are not fast.

How about the privileged hardware feature ?

- -—

Is there a privileged hardware feature which is more
efficient than Intel MPX/MPK for the memory isolation 22?2



I Motivation SMAP in Processors 101

* To prevent the kernel from inadvertently
accessing malicious data in user space,

— dereferencing a corrupted data pointer

corrupted pointer

Kernel Space

User Space




I Motivation SMAP in Processors 101

* To prevent the kernel from inadvertently
accessing malicious data in user space,

— dereferencing a corrupted data pointer

* Intel and AMD provide the Supervisor-
mode Access Prevention (SMAP)
hardware feature to disable the kernel
access to the user space memory.

corrupted pointer

Kernel Space

User Space

SMAP



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.

* SMAP disallows the code access to the U-page in the supervisor-mode.
— S-mode is short for supervisor-mode (ring 0-2).
— U-mode is short for user mode (ring 3).



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.

* SMAP disallows the code access to the U-page in the supervisor-mode.
— S-mode is short for supervisor-mode (ring 0-2).
— U-mode is short for user mode (ring 3).

e Ring o Ring.1 Ring 2 |Ring 3

Privileged Instruction Fetch Y x

X X
S-page Access Permission V V V x
s

U-page Access Permission v
@) SMAP is disabled



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.

* SMAP disallows the code access to the U-page in the supervisor-mode.
— S-mode is short for supervisor-mode (ring 0-2).
— U-mode is short for user mode (ring 3).

e Ring o Ring.1 Ring 2 |Ring 3

Privileged Instruction Fetch Y x

X X
S-page Access Permission V V V x
X

U-page Access Permission X X
SMAP is enabled



I Motivation SMAP in Processors 101

* X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
— When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.



I Motivation SMAP in Processors 101

* X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
— When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

* POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
— popfq could be execute in S-mode (ring 0-2).
— stac/clac are privileged instructions that can only be execute in ring o.



I Motivation SMAP in Processors 101

* X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
— When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

* POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
— popfq could be execute in S-mode (ring 0-2).
— stac/clac are privileged instructions that can only be execute in ring o.

wrpkru 18.9 Update the access right of a pkey in Intel MPK
popfqg 22.4 Pop stack into the RFLAGS register.
stac/clac @ 8.6 Set/Clear the AC flag in the RFLAGS register.



I Motivation SMAP in Processors 101

* X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
— When the RFLAGS.AC flag is set in S- mode, SMAP is disabled.

* POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
— popfq could be execute in S-mode (ring 0-2).
— stac/clac are privileged instructions that can only be execute in ring o.

wrpkru 18.9 Update the access right of a pkey in Intel MPK
popfqg 22.4 Pop stack into the RFLAGS register.
stac/clac @ 8.6 Set/Clear the AC flag in the RFLAGS register.



I Outline

Motivation

| ﬁi High-level Design



SEIMI

I High-level Design

* The Memory Layout Setting
— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.
* The Running State Setting
— The process runs in ring 0, due to the stac/clac are privileged instructions.



I High-level Design

SEIMI

* The Memory Layout Setting

— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.

* The Running State Setting

— The process runs in ring 0, due to the stac/clac are privileged instructions.

2

\ Heap (RW) Stack (RW)2 Code (RX) RW ,
Ringo | [s]s| [s|s|, [s]s ulufufu] |
Regular Memory Region Isolated Memory Region

S | S-page U | U-page Access Denied




I High-level Design

SEIMI

* The Memory Layout Setting

— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.

* The Running State Setting

— The process runs in ring 0, due to the stac/clac are privileged instructions.

@) SMAP is disabled

2
¢

Ujuju|uU

\ Heap (RW) Stack (RW)2 Code (RX)
RingoLSSzSSeSS'
Regular Memory Region
S | S-page U | U-page

]

Isolated Memory Region

| Access Denied



I High-level Design —— SEIMI

* The Memory Layout Setting
— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.

* The Running State Setting
— The process runs in ring 0, due to the stac/clac are privileged instructions.

, Heap (RW) , Stack (RW)2 Code (RX) , RW _,
Ring 0 [ S|s S|S S|S- Uy ]
2 % ¢ 2 = ¢

Regular Memory Region Isolated Memory Region

1 Access Denied

S | S-page U | U-page




SEIMI

I High-level Design

* Problem:
— Running untrusted code in ring 0 may corrupt the OS kernel.



I High-level Design SEIMI

* Problem:
— Running untrusted code in ring 0 may corrupt the OS kernel.

* Our Solution Placing the OS kernel in “ring -1”
— Using the Intel VT-x technique to separate the target application and the OS kernel

VM Entry

Intel VT-x

VM Exit

\ 4

VMX non-root (guest) VMX root (host)



SEIMI

I High-level Design

* Problem:
— Running untrusted code in ring 0 may corrupt the OS kernel.

* Our Solution Placing the OS kernel in “ring -1”.
— Using the Intel VT-x technique to separate the target application and the OS kernel

Target Process OS Kernel

VM Entry

Intel VT-x

VM Exit

~
7

VMX non-root (guest) VMX root (host)



Challenges in SEIMI @

* C-1: Distinguishing SMAP reads and writes.
— Sensitive data may require only integrity protection.

I High-level Design

— Preventing reads from untrusted code can lead to unnecessary overhead.



Challenges in SEIMI [@\

* C-1: Distinguishing SMAP reads and writes.
— Sensitive data may require only integrity protection.

I High-level Design

— Preventing reads from untrusted code can lead to unnecessary overhead.

* C-2: Preventing the leaking/manipulating of the privileged data structures.
— In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
— Some data structures are privileged, e.g., the page tables.



Challenges in SEIMI ﬁl

* C-1: Distinguishing SMAP reads and writes.
— Sensitive data may require only integrity protection.

I High-level Design

— Preventing reads from untrusted code can lead to unnecessary overhead.

* C-2: Preventing the leaking/manipulating of the privileged data structures.
— In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
— Some data structures are privileged, e.g., the page tables.

* (C-3: Preventing the abusing of the privileged hardware features.
— Besides the stac/clac, other privileged instructions can also run in ring o.



I Outline

Motivation

High-level Design

D

Approach Overview




I
s

I Approaches Overview Challenge-1

* C-1: Distinguishing SMAP reads and writes.

* Solution The shared-memory based read/write separation method.



I
s

I Approaches Overview Challenge-1

* C-1: Distinguishing SMAP reads and writes.

* Solution The shared-memory based read/write separation method.
SMAP is enabled
Heap (RW)  Stack (RW)  Code (RX) RW
, 2 2 2 T—— 25573 2
Ringo | * [s|s| [s|s|,[s|sT—,%] N

Regular Memory Region Isolated Memory Region

S | S-page U | U-page | Access Denied




I Approaches Overview

I
s

Challenge-1

* C-1: Distinguishing SMAP reads and writes.

e Solution

Ring 0 [2

2

The shared-memory based read/write separation method.

SMAP is enabled
Heap (RW) Stack (RW)2 Code (RX) , RW RO ,
s|s s|s| |sls: s|s|s|s]|) |
2 2 2 e e it A A A A A, et 2

Regular Memory Region

S-page

U

Isolated Memory Region

U-page

! Access Denied



I Approaches Overview

I
s

Challenge-1

* C-1: Distinguishing SMAP reads and writes.

e Solution

Ring 0 [2

2

The shared-memory based read/write separation method.

SMAP is enabled
Heap (RW) Stack (RW)2 Code (RX) , RW RO ,
s|s|,[s[s],[s]s: ls|s|s|s] |
2 2 2 A A R R KR R R A B P 2

Regular Memory Region

S-page

U

N
These Two Regions are Shared

U-page | Access Denied




I
s

I Approaches Overview Challenge-2

* C-2: Preventing the leaking/manipulating of the privileged data structures.



I
s

I Approaches Overview Challenge-2

* C-2: Preventing the leaking/manipulating of the privileged data structures.

e Observation:

— The operations to these structures are only performed when the process accesses
the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.



I
s

I Approaches Overview Challenge-2

* C-2: Preventing the leaking/manipulating of the privileged data structures.

e Observation:

— The operations to these structures are only performed when the process accesses
the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

N

e Solution: \Ql

— Placing the privileged data structures and their operations into the VMX root mode.

— We leverage the Intel VT-x technique to force all these events to trigger VM exits
and enter into the VMX root mode.



J AT
Ns2Z

IApproaches Overview Challenge-3 Y

* (C-3: Preventing the abusing of the privileged hardware features.



iR
NS2%

IApproaches Overview Challenge-3 Y

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution:
— SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Po?



I
s

I Approaches Overview Challenge-3

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution:
— SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

J Triggering the VM exits and stopping the execution;

Po?



I
s

I Approaches Overview Challenge-3

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution:
— SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

| Triggering the VM exits and stopping the execution;

Po?

74 Invalidating the execution effects;



I
s

I Approaches Overview Challenge-3

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution:
— SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

| Triggering the VM exits and stopping the execution;

Po?

4 Invalidating the execution effects;

1 Raising processor exceptions and disabling the execution.



I Outline

Motivation
High-level Design

Approach Overview

SEIMI System

D



I System Overview

is implemented on Linux/X86 64 platform.

I

Ihs=4




I System Overview

is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase

I

Ihs=4




I System Overview

is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase

Y9

Compiler

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

I




I System Overview

is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase

Load & Run

-~
o
ook
=1
-1
e

oo

Je

9
‘e

Cn‘:pl

s

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

I




System Overview [N~
is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase
Load & Run R
<
=4
Compilation phase Runtime Phase
Users could use the SEIMI’s APIs to The core of SEIMI is a kernel module which monitors
management the isolated memory region. the startup of the target application and places it into

ring o of the VMX non-root mode.



System Overview

I
s

is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase
Load & Run ‘ Target Process Other Processes
HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
N N
User

o
ook
=1
o
e
oo
-
-

Je

=
(<<

Kernel

(m]
(]

o

Kernel Module

Compiler

library.a OS Kernel
HW(VMX root, Ring 0)

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

Runtime Phase

The core of SEIMI is a kernel module which monitors

the startup of the target application and places it into
ring o of the VMX non-root mode.




I SEIMI Compilation Phase

provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

Y9

Compiler

Compilation phase




I SEIMI Compilation Phase

provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

@ API Description

void *sa_alloc(size_t length, Allocate an 1solated U-page region at
/ y bool need_ro, the page granularity. If specified, it also
_ & | e—

long *offset): allocates a shared isolated S-page region.

size_L !'E.Hgﬁ.’]; with the specified length.

E v bool sa_free(void *addr, Free an isolated U-page region
7

\S\ouﬂﬂ Llw‘ Q\  #define SWITCH_IN \ Disable SMAP—access the

asm("stac\n"): isolated U-page region is allowed.

#define SWITCH_OUT \ Enable SMAP—access to the

Compllatlon phase asm("clac\n"); isolated U-page region is denied.




I SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.
Target Process Other Processes
HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
N N
User_ | e ___
Kernel

& Kernel Module

OS Kernel

HW(VMX root, Ring 0)

Runtime Phase



SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.

J Memory Management Component

Target Process Other Processes
— Configures the regular/isolated memory region. HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
N N
User_ | _ .
Kernel

& Kernel Module

OS Kernel

HW(VMX root, Ring 0)

Runtime Phase



SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.

J Memory Management Component
— Configures the regular/isolated memory region.

Target Process

Other Processes

HW(VMX non-root, Ring 0)
N

A4

J Privileged Instructions Prevention Component @ Kernel Module

— Prevents these instructions from being abused.

HW(VMX root, Ring 3)
N

OS Kernel

HW(VMX root, Ring 0)

Runtime Phase




SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.

J Memory Management Component

Target Process Other Processes
— Configures the regular/isolated memory region. HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
N N
User_ | _ .
Kernel

A4

J Privileged Instructions Prevention Component @ Kernel Module

— Prevents these instructions from being abused. 0S Kernel

HW(VMX root, Ring 0)

Runtime Phase
J Events Redirection Component

— Handles system calls, interrupts, exceptions, and Linux signals.



I SEIMI Memory Management Component

A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page.tra_l\ble entries.
— Flipping the U/S bit to set the U-page and S-page neatly. .2



I SEIMI Memory Management Component

A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page.tra\ble entries.
— Flipping the U/S bit to set the U-page and S-page neatly. .2

Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page

.

#0O
#255
#256

User-
Page

#511




I SEIMI Memory Management Component

A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page table entries.

"
— Flipping the U/S bit to set the U-page and S-page neatly. .-

Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page
#0 yy
#255 User-

#256|( S Page
#511| S
1G 2M 4K
Copy & Sync
> i
#0 s #0—#254 entries only | | :
change the U/S bit. Isuper|

. i 1
#255 « #256—#511  entries | VIS0,

only change the P bit. : Page |
" [NULL | |
#511 L——
4KB Page
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry




I SEIMI Memory Management Component

A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page table entries.

P
— Flipping the U/S bit to set the U-page and S-page neatly. :_.:

Page Page 4KB
PMLA PDPT Directory Table Page
Wk ;
#255 User-
#256| S Page . . . e 2
Entris in PML4 | Size(TB)

16 2M 4K #0 ~ #254 127.5 Regular Memory  S-page

#511| S

— #2585 0.5 Isolated Memory  U-page
* #0—#254 entries only I :
change the U/S bit. Isuper|

. i 1
#255 « #256—#511  entries | VIS0,

#o

#255 ~ #511 128.0 Kernel Space NULL

only change the P bit. : Page |
" [NULL | |
#511 L——
4KB Page
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry




I SEIMI Memory Management Component

* Support the read-only isolated S-page memory region.
C g
— Flipping the R/W bit to set the read-only permission neatly. :_.:

Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page

#0

#255 User-
#256 S Page

#511| S
512G 1G

#O S

#511 NULL

— [Guest CR3

User-Mode Entry Supervisor-Mode Entry




I SEIMI Memory Management Component

* Support the read-only isolated S-page memory region.
N
— Flipping the R/W bit to set the read-only permission neatly. :_.°

Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page

#0
1255 User-
#256| S Page
b vis P [SzeT2)
B +© #0 ~ #253 7 Regular Memory  S-page
Set the Read-only Region
oMLA’ * The R/W bit of the #254 #254 0.5 Isolated Memory  S-page
entry Is set to u.
#_c_) S #2505 0.5 Isolated Memory  U-page
#254( S
w255 [T #255 ~ #511 128 Kernel Space NULL
yoqq |[NULL
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry




SEIMI Memory Management Component

* Support the read-only isolated S-page memory region.

— Flipping the R/W bit to set the read-only permission neatly. .
Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page
#0
#255 User-
#256( S Page
onbS Entries in PML4 | Size(TB)
"B 16 #0 ~ #253 127 Regular Memory  S-page
Set the Read-only Regi
PMLA’ +"The R/W bit of the #254 #254 0.5 Isolated Memory  S-page
entry is set to 0.
_____ 1 e | #255 0.5 lIsolated Memory  U-page
:223.5_: Is\;‘”‘-’d #255 ~ #511 128 Kernel Space NULL
emory Set the Shared Memory
NULL * The #254 and the #255
#511 reference the same PDPT.
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry




ISEIMI Privileged Instruction Prevention Component

* We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.



ISEIMI Privileged Instruction Prevention Component

* We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.

 Quridentification method:

&) Automated filtering

—  We embed each instruction with
random operands into a test program
and run it in ring 3.

— By capturing the #GP and the #UD, we
automatically and completely filter all
privileged instructions.




ISEIMI Privileged Instruction Prevention Component

We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.

 Quridentification method:

&) Automated filtering ¢ Manual Verification
—  We embed each instruction with —  We manually review the description
random operands into a test program of all X86 instructions by reading the
and runitin ring 3. Intel Software Developers’ Manual.
— By capturing the #GP and the #UD, we — Confirm the first step is complete,
automatically and completely filter all and also find the instructions that
privileged instructions. behave differently in ring 0 and ring 3.




ISEIMI Privileged Instruction Prevention Component

* We group them into 20 categories based on their different functionality. %



ISEIMI

* We group them into 20 categories based on their different functionality.
Is Privileged

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME]READ]WRITE]... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Instruction?

=<

<K <<ZZZZ<<<<<<<<=<=<=<<

Privileged Instruction Prevention Component

P09



ISEIMI

* We group them into 20 categories based on their different functionality.
Is Privileged

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME]READ]WRITE]... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Instruction?

< <

<K <X<ZZZZ<<<<K<<<<=<<<

Privileged Instruction Prevention Component

Pe?

Triggering VM Exit and Stopping Execution.

Using the Intel VT-x technique to configure
the VM exits directly.



ISEIMI

* We group them into 20 categories based on their different functionality.

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME]READ]WRITE]... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Is Privileged

Instruction?

< <

<K <X<ZZZZ<<<<K<<<<=<<<

Privileged Instruction Prevention Component

Pe?

Triggering VM Exit and Stopping Execution.

* Using the Intel VT-x technique to configure
the VM exits directly.

Invalidating the Execution Effects.
* The execution does not change any state.



ISEIMI

* We group them into 20 categories based on their different functionality.

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME|READ|WRITE|... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Is Privileged

Instruction?

=<

<K <<ZZZZ<<<<<<<<=<=<=<<

Privileged Instruction Prevention Component

Pe?

Triggering VM Exit and Stopping Execution.

* Using the Intel VT-x technique to configure
the VM exits directly.

Invalidating the Execution Effects.
* The execution does not change any state.

Raising the Execution Exception and Stopping
Execution.

* Configure the execution condition.



ISEIMI

* We group them into 20 categories based on their different functionality.

O ON OVV1 - W N =

-—
o

Detailed Instructions

VM[RESUME|READ]WRITE|... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD...)
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Is Privileged

Instruction?

=<

<K <<ZZZZ<<<<<<<<=<=<=<<

Privileged Instruction Prevention Component

Pe?

Triggering VM Exit and Stopping Execution.

* Using the Intel VT-x technique to configure
the VM exits directly.

Invalidating the Execution Effects. \
* The execution does not change any state.

Raising the Execution Exception and Stopping
Execution. )
Q

* Configure the execution condition.



ISEIMI Privileged Instruction Prevention Component

?e?
Raising the Execution Exception. e]j%)
— We choose to raise an exception during their execution and to trigger the VM exits.



ISEIMI Privileged Instruction Prevention Component

?e?
Raising the Execution Exception. e]j%)
— We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
— Xsaves, xrstors, invpcid ... via configuring the VMCS to disable the support in guest.



ISEIMI Privileged Instruction Prevention Component

?e?
Raising the Execution Exception. e]j%)
— We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
— Xsaves, xrstors, invpcid ... via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception) «

— sysexit, sysret... due to the S-page setting in all code pages.



ISEIMI Privileged Instruction Prevention Component

Po?
Raising the Execution Exception. e]j%}

— We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)

— Xsaves, xrstors, invpcid ... via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception) «

— sysexit, sysret... due to the S-page setting in all code pages.

Raising the #GP (general protection exception) @

— Segment-switching related instructions: mov to %ds, Icall...



ISEIMI Privileged Instruction Prevention Component

* Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.



ISEIMI Privileged Instruction Prevention Component

* Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

* Problem:
— Intel VT-x cannot intercept these instructions that could change the segment. &



ISEIMI Privileged Instruction Prevention Component

* Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

* Problem:
— Intel VT-x cannot intercept these instructions that could change the segment. &

—~ ) How to intercept this type of instructions 222



ISEIMI Privileged Instruction Prevention Component

e Observation

— When changing a segment register, the hardware will use the target selector to
access the segment descriptor table to obtain the target segment information.




ISEIMI Privileged Instruction Prevention Component

e Observation

— When changing a segment register, the hardware will use the target selector to
access the segment descriptor table to obtain the target segment information.

— If the segment descriptor table is empty, the CPU will raise a general protection
exception (#GP) in this process.



ISEIMI Privileged Instruction Prevention Component

e Observation

— When changing a segment register, the hardware will use the target selector to
access the segment descriptor table to obtain the target segment information.

— If the segment descriptor table is empty, the CPU will raise a general protection
exception (#GP) in this process.

\Q’Solution Emptying out this table to intercept such instructions.



ISEIMI Privileged Instruction Prevention Component

e Observation

— When changing a segment register, the hardware will use the target selector to
access the segment descriptor table to obtain the target segment information.

— If the segment descriptor table is empty, the CPU will raise a general protection
exception (#GP) in this process.

\Q’Solution Emptying out this table to intercept such instructions.

* Problem:
— How to ensure the normal execution (segment addressing)?
— How to ensure the correct functionality of the segment-switching instructions?



ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.

7ds: Visible Part Hidden Part
"| Selector Base, Limit, Access




ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.

7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR
I
) GDT f LDT
LDT Descriptor Base,Limit,Access
A

mov %ds:(%rax), %rbx



ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.

-
ON

—

7~

7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR mov to %ds \
I
LDT Descriptor Base,Limit,Access—
A

mov %ds:(%rax), %rbx

Segment-switching instruction
will load the information into
the descriptor cache.



ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

-
ON

—

7~

7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR mov to Zds \
I
LDT Descriptor Base,Limit,Access—

A

mov %ds:(%rax), %rbx

Segment-switching instruction
will load the information into
the descriptor cache.



ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

Filling the correct information into

the cache via configuring the VMCS.

-
ON

—

7~

7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR mov to %ds \
I
LDT Descriptor Base,Limit,Access—
A

mov %ds:(%rax), %rbx

Segment-switching instruction
will load the information into
the descriptor cache.



ISEIMI Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.

— X386 allows the descriptor cache to be inconsistent with the descriptor table.
VMCS

Guest

CS/SS/DS...GS:

Filling the correct information into
the cache via configuring the VMCS.

mov to Zds \

-
ON

Segment-switching instruction
j will load the information into

,/  the descriptor cache.

7~

Selector |
Base, Limit, Access @) T~ -
N
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access
GDTR LDTR
I
— GDT f LDT
LDT Descriptor Base,Limit,Accessf—
A

mov %ds:(%rax), %rbx



ISEIMI

Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

At last, emptying
out the segment
descriptor table.

VMCS
Guest Filling the correct information into
CS/SS/DS...GS: the cache via configuring the VMCS.
Selector |
Base, Limit, Access @ T~
N
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access <®\
oq)  Segment-switching instruction
mov to %ds
GDTR IIDTR ) will load the information into
—> GDT LDT ,/  the descriptor cache.
LDT Descriptor Base,Limit,Access—~
7Y

mov %ds:(%rax), %rbx



ISEIMI

Privileged Instruction Prevention Component

* Segment-switching exception using descriptor cache.
— X386 allows the descriptor cache to be inconsistent with the descriptor table.

At last, emptying
out the segment
descriptor table.

VMCS
Guest Filling the correct information into
CS/SS/DS...GS: the cache via configuring the VMCS.
Selector |
Base, Limit, Access @“ T~ Emulating the function of the normal
\\ segment-switching instructions.
7ds: Visible Part Hidden Part
—+ Selector Base, Limit, Access <®\
oq)  Segment-switching instruction
mov to %ds
GDTR IIDTR ) will load the information into
—> GDT LDT ,/  the descriptor cache.
LDT Descriptor Base,Limit,Access—~
7

mov %ds:(%rax), %rbx



ISEIMI Privileged Instruction Prevention Component

Pe?
Invalidating the Execution Effects. e]j%)

— We invalidate their execution effects, thus preventing attackers from using these
instructions to obtain information or change any state.



ISEIMI Privileged Instruction Prevention Component

Pe?
Invalidating the Execution Effects. (‘]—/%

— We invalidate their execution effects, thus preventing attackers from using these
instructions to obtain information or change any state.

 CRO/CR4-related instructions.
— Configure guest/host masks and read shadows in VMCS.
— The value of the %CR0o/%CR4 read is all o.
— Write to them does not really modify the values;



ISEIMI Privileged Instruction Prevention Component

Pe?
Invalidating the Execution Effects. e]j%}

— We invalidate their execution effects, thus preventing attackers from using these
instructions to obtain information or change any state.

 CRO/CR4-related instructions.
— Configure guest/host masks and read shadows in VMCS.
— The value of the %CR0o/%CR4 read is all o.
— Write to them does not really modify the values;

 SWAPGS, L[AR/SL], VER[R/W], CLI/STI ...
— More details are in the paper.Q_



ISEIMI Events Redirection Component ‘ A

* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* The lA32 LSTAR MSR register in guest points to this page.



ISEIMI Events Redirection Component ‘ g

* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* The lA32 LSTAR MSR register in guest points to this page.

— The kernel module vectors the system call table and calls the handlers.



ISEIMI Events Redirection Component ‘ g

* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* The lA32 LSTAR MSR register in guest points to this page.

— The kernel module vectors the system call table and calls the handlers.

* Interrupts and Exceptions Handling
— All these events trigger the VM exit via configuring the VMCS.
— The kernel module checks the call gates and vectors the IDT.



ISEIMI Events Redirection Component ‘ v

* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* The lA32 LSTAR MSR register in guest points to this page.

— The kernel module vectors the system call table and calls the handlers.

* Interrupts and Exceptions Handling
— All these events trigger the VM exit via configuring the VMCS.
— The kernel module checks the call gates and vectors the IDT.

* Linux Signal Handling
— Check the signal queue, and switch the context via configuring the VMCS.



SEIMI ome Implementations

* Memory Management Implementations
— Avoiding overlaps in the 254th and 255th entries.
— Handling the VSYSCALL page.
— Tracking updates of the PML4 page.
— Avoiding accessing the kernel by exploiting the TLB.

* Other Implementations
— Hardening system calls against confused deputy.
— Starting and exiting the target process.
— Supporting multi-threading and multi-processes.
— Defeating the concurrent attacks.

SEIMI: Efficient and Secure SMAP-Enabled
Intra-process Memory Isolation

Zhe Wang"? Chenggang Wu? Mengyao Xie? Yingian Zhang® Kangjie Lu*
Xiaofeng Zhang!2 Yuanming Lai’? Yan Kang! Min Yang®

! State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences,
2 University of Chinese Academy of Sciences, * The Ohio State University, * University of Minnesota, ®Fudan University

Abstract—Memory-corruption attacks such as code-reuse at-
tacks and data-only attacks have been a key threat to systems
security. To counter these threats, researchers have proposed a
variety of defenses, including control-flow integrity (CFI), code-
pointer integrity (CPI), and code (re-)randomization. All of
them, to be effective, require a seci il
protection of confidentiality and/o
(such as CFI’s shadow stack and CPI’s safe region).

In this paper, we propose SEIMI, a highly ef
process memory j ique for memory-corruption de-
fenses to prof ata. The core of SEIMI is
to use the Access Prevention (SMAP),
used for preventing the
to achieve intra-process
CIMI creatively executes
addition to enabling the
isolation, we further
develop m secure escalation of
user code, e. apture the potential

segment opers tual Machine Control
Structure (VMCS] he result of the control
registers related operations. Extent atal results show

that SEIMI outperforms existing isol sms, including
both the Memory Protection Keys (Vi scheme and
the Memory Protection ensions (MPXS scheme, while

providing secure memory isolation.

I. INTRODUCTION

Memory-corruption attacks such as control-flow hijacking
and data-only attacks have been a major threat to sy
y in the past decades. To defend against such attacks,
researchers have proposed a variety of advanced mechanisms,
including enhanced control-flow integrity (CFI), code-pointer
integrity (CPI), fine-grained code (re-)randomization, and data-
layout randomization. All these techniques require a security
primitive—effective intra-process memory protection of the
integrity and/or confidentiality of sensitive data from potentially
compromised code. The sensitive data includes critical data
structures that are frequently checked against or used for
protection. For example. O-CFI [39] uses a bounds lookup
table (BLT), and CCFIR [58] uses a safe SpringBoard to
restrict the control flow: CPI [31] uses a safe region. and
Shuffler [55] uses a code-pointer table to protect the sensitive
pointers: Oxymoron [6] maintains a sensitive translation table.
and Isomeron [19] uses a table to protect randomization secrets.

securs

The effectiveness of all such techniques heavily depends on
the inte and/or confidentiality of the sensitive data.

To efficiently protect sensitive data, researchers proposed
information hiding (IH) which stores sensitive data in a memory
region allocated in a random address and wishes that attackers
could not know the random address thus could not write or
read the sensitive data. Unfortunately, recent works show that
memory disclosures and side channels can be exploited to

readily reduce the randomization entropy and thus to bypass
the information hiding [22-24. 36, 41]. As such, even a robust
IH-based defense can be defeated.

To address this problem, recent re:

arch instead opts for
practical memory isolation which provides efficient protection
with a stronger security guarantee. Memory isolation, in general,
can be classified into add) based isolation and dc in-based
isolation. Address-based isolation checks (e.g.. bound-check)

each memory access from untrusted code to ensure that it
cannot access the sensitive data. The main overhead of this
method is brought by the code that performs the checks. The
most efficient address-based isolation is based on Intel Memory
Protection Extensions (MPX), which performs bound-checking
with hardware support [30].

Domain-based isolation instead stores sensitive data in
a protected memory region. The permission to accessing
this region is granted when requested by the trusted code,

and is revoked when the trusted access finished. However,
memory accesses from untrusted code (i.e., the potentially
kers) cannot
enable the permission. The main source of the performance

vulnerable code that can be compromised by atta

overhead of domain-based memory isolation is the operations
for enabling and disabling the memor s permissions. The
most efficient domain-based isolation is to use Intel Memory
Protection Keys (MPK) [25, 30, 40, 47].

In general, existing address-based isolation and domain-
based isolation both incur non-trivial performance overhead
compared to the IH-based scheme. Worse, the overhead will be
significantly elevated when the workloads (i.c., the frequency
of memory accesses that require bound-checking or permission
switching) increase. For example, when protecting the shadow
stack, the MPK-based scheme (i.e., domain-based) incurs a
runtime overhead of 61.18% [40]. When protecting the safe
region of CPI using the MPX-based scheme (i.

Idress




I Outline

q]|>

Motivation
High-level Design
Approach Overview

SEIMI System

Evaluation



I Performance Evaluation

* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes



I o

I Performance Evaluation

* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes
* Microbenchmark
— Imbench v3.0-a9

the overheads imposed by SEIMI on kernel operations.



I o

I Performance Evaluation

* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

* Microbenchmark
— Imbench v3.0-a9

the overheads imposed by SEIMI on kernel operations.

e Macrobenchmark the overheads on different isolation schemes.
— SPEC CPU2006 C/C++ benchmark with the ref input.



lIo

I Performance Evaluation °

* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes
* Microbenchmark
— Imbench v3.0-a9

the overheads imposed by SEIMI on kernel operations.

e Macrobenchmark the overheads on different isolation schemes.
— SPEC CPU2006 C/C++ benchmark with the ref input.

* Real-world applications:

— 4 Web servers: Nginx, Apache, Lighttpd, and Openlitespeed.
— 4 Databases: MySQL, SQLite, Redis, and Memcached.

— 4 JavaScript engines: ChakraCore, Google V8, JavaScriptCore, SpiderMonkey.



I Microbenchmark Imbench 10

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.



I Microbenchmark Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

null null open select signal signal fork exec  sh
call I/O stat close TCP install handle proc proc proc

Config

Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 o6.11 0.79 3.02 463 1029 2368

I
I
|
[
I
I
|

SlOWdOWD‘ZAX 22X 13X LI1X 14% 1.9X 21X 30.4% 18.3% 9.5% :
I
|
[
I
I
|
[

J Latency on process-related kernel operations
(in us): smaller is better.



I Microbenchmark

Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

) null  null open select signal signal fork exec  sh Config 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Config call I/O stat close TCP install handle proc proc proc '
Native 021 026 057 123 535 027 099 355 870 2162 I;EIIWMGI 3'22 g'gg 3;} ?61:1% }i'é 181'432 }ég
SEIMI  |0.71 0.82 1.33 258 6.11 079 3.02 463 1029 2368 - A 3. - : - :
SlOWdOWIl‘ZAX 2.2X 1.3X 1.1X 14% 19X 21X 304% 18.3% 9.5% 20.0% 189% 16.1% 242% 21.3% 36.7% 26.2%

1

(in us): smaller is better.

Latency on process-related kernel operations

|
|
|
|
|
|
|
| | Slowdown
|
|
|
|
|
|
|

J Context-switching latency (in us): smaller is better.




I Microbenchmark

Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

] null null open select signal signal fork exec  sh
Config call I/O stat close TCP install handle proc proc proc
Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 6.11 0.79 3.02 463 1029 2368
Slowdown [2.4X 22X 1.3X LIX 14% 1.9X 21X 30.4% 18.3% 9.5%

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Native 205 206 3.1 813 122 843 126
SEIMI | 246 245 36 101 148 11.52 159
Slowdown |20.0% 18.9% 16.1% 242% 213% 36.7% 26.2%

1

(in us): smaller is better.

Latency on process-related kernel operations

Mmap Prot Page 100fd

OK File 10K File
Config Create Delete Create Delete Latency Fault Fault select
Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 5.3421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowd0wn|27.2% 11.7% 33.0% 12.6%

84.4% 63.2% 33.6% 67.8%

3

better.

File & VM system latency (in us): smaller is

J Context-switching latency (in us): smaller is better.



I Microbenchmark Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Native 2.05 2.06 3.1 8.13 12.2 8.43 12.6
SEIMI 246 245 3.6 10.1 14.8 11.52 15.9

null null open select signal signal fork exec  sh
call I/O stat close TCP install handle proc proc proc

Config

Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 o6.11 0.79 3.02 463 1029 2368

1
1
1
1
1
1
1
1
Slowdown [2.4X 2.2X 1.3X 11X 14% 19X 21X 304% 18.3% 9.5% | ,  Slowdown|20.0% 18.9% 16.1% 24.2% 21.3% 36.7%  262%
1
1
1
1
1
1
1

J Latency on process-related kernel operations

(in ps): smaller is better J Context-switching latency (in us): smaller is better.

Pipe AF UDP RPC/ TCP RPC/ TCP
Config UNIX UDP TCP conn

Native 5582 92 9883 149 139 176 22
SEIMI 7428 11.7 11.7 20 176 239 24

Slowdown|33.l% 27.2% 18.4% 34.2% 26.6% 35.8% 9.1%

OK File 10K File Mmap Prot Page 100fd
Config Create Delete Create Delete Latency Fault Fault select

Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 53421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowdown | 27.2% 11.7% 33.0% 12.6% 84.4% 63.2% 33.6% 67.8%

J File & VM system latency (in us): smaller is
better.

J Local-communication latency (in us): smaller
is better.



I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%

585% . 360%
?? 510% | OIH S MPX (a) OCFI 2a09 [ 2 B MPX (c) CPI
£ 435% [ AMPK  mSEIMI ° tl ZBMPK mSEIMI
0 360% [ 200%
o 285% | 120%
° -
Ehll , A . 5
€ ° L I A 10%
0 —_ﬂj_l\gl____ rh__rl._r‘ﬂil_.—wl___ I_Li_ﬂ__ - ||blrﬂ—.__m_ll|f‘rrpl
@ 0T eawm,m. N ILJBIJL_M BT 7 I - . L |
v L WO NP (o) N £ D & 0 . o N > & 0
@0& i @ N &6@’?} 0¢° @ 3 O @fb‘bu@ @‘i@:&{?@é&%&(\@@@e@ 01:@’ & O «zﬁ‘ o \“@6‘0 “‘Q’ ‘f; *96\ SR S
) ¢ o. Ay 0 07 & TR0
¥ ¥ @ 42 @
285% | 30% D AG —
3 : OIH  =MPX (b)SS 25% -| OIH AMPX @
£ 210% | MPK mSEIMI 20% | ZMPK  mSEIMI
(0] r 0,
ES 15%
£ L z I a ” 5% H
= o, —=
> T ad Ar... 1141 fﬁn Aalla o - T -
o o N o rﬂ _m J_|7IIL—- g J—b- _n—E. g _l_@l -59%, |
&oé‘ LAl & ,2;5\0 ’b Q\ st 6\6‘ @ ’l«b‘ \‘36\\ &00 ¥ ® c§>"> <<\ N &@0 s 6.\\ of
¢ \\‘00‘ ° +\®q NS &



I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%.

* Compared to the MPK-based scheme, SEIMI is more efficient in almost all test cases,
and with the average reduction of 42.3% (maximum is 133.33%).

585% 360%

©
© 510% | OIH = MPX (a) OCFI Js0 £ O = MPX (c) CPI
£ 435% | SMPK mSEIMI ZMPK  mSEIMI
Q 360% 200%
O 285% [ .
2 210% [ E‘ 120% T ;El
= 135% | V. i % A 10%
c
o, =F " ;ﬂv—l‘u_._.__ rh__rl._r‘ﬂil_.—wl___ I_Li_ﬂ__ -I'Wi ||blrﬂ—.__m_ll|f‘rrpl
@ 300 Tl st Mon m o o AL A5 M i o g, i |
f\
@0‘:@ ¥ & N 6\2@“@0&* &‘2@ &2 @*j; 3 e \&:\ o s & <c~\\°,§° SN \‘bto@‘a & @‘fL w2 ~z<>‘° R @o+:cp<<‘* &
¢ & kil & & %}@ ek
285% | 30% (d) AG =
® : O =BMPX (b) SS 059 ©| OIH = MPX
£ 210% | AMPK mSEIMI 20% | ZMPK  mSEIMI
g o 15%
O 135% | ; . " 10%
£ g 7 I . 5%
A Ao M Anh Adalls o omrats o
o 10% J‘% o rﬂ _m J_|7IIL—- J—b- _ _n—E. g _l_@l -59%, |
R YR P D @ B O 1 R o P &G\\"@@ O & @ PSS
LR F & @@®o®®®¢°4<@@ Q.QQB“&O@‘&Q&\G*\Q@Q,@ G & & 6\6‘ o & ¥ T & @
& 9 R o'\ & ST & TR E <3 Ng KR o
Qe& \\‘00‘ %) % _@\@ &o /s ‘\\\OQ K



I Macrobenchmark SPEC CPU 2006 benchmark

* Performance Analysis: MPK vs. SEIMI

600% r =
- O OH(MPK) -
500% £ A OH(SEIMI) B
T400% F — =Trandline(MPK) _RT 0O
Q C ——Trandline(SEIMI) - A
E 300% F -
o 'S —_ 0
3200% [ o
- S A 2
100%
OO/D " ] ] | 1 1 ] ] | 1 1 1 ] | ] 1 ] 1
0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05

Switches/ms
The impact of permission-switching frequency
on performance of MPK and SEIMI.



I Macrobenchmark SPEC CPU 2006 benchmark

* Performance Analysis: MPK vs. SEIMI

o00% ¢ OH(MPK) © @_:
C O
500% £ A OH(SEIMI) el | A C d MPK h
gooo | o : permission switching frequency
- -9, increases, the performance gain of
oy RRERER. L L L L L L L — SEIMI becomes more apparent.
0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05
Switches/ms

The impact of permission-switching frequency
on performance of MPK and SEIMI.



I Macrobenchmark SPEC CPU 2006 benchmark

* Performance Analysis: MPX vs. SEIMI

° 700 A OH(MF’X)fOH(SEIMI) I R i
& 200 —Trendline (MPX/SEIMI) l A
o 4 A A A I A ®p |
© B | |
(] [ |
< 3t 'a a |
S

| e e e e

O |||||||||||||||||||| |,J, ||||||||

0 200 400 600 800 2.1E+10

CFreq. / SFreq.

The impact of bound-checking frequency (CFreq) and
permission-switching frequency (SFreq) on performance.

HI




C

I Macrobenchmark SPEC CPU 2006 benchmark E

* Performance Analysis: MPX vs. SEIMI

1200 - el e
A OH(MPX)/ OH(SEIMI) | | \ .
° ;gﬁ T rendine (MPXISEIM) AN T When the bound-checking
S 4 N s ad aata | frequency is 52 times of the access
£ 3p P permission switching frequency,
T J . . :
R Y SEIMI is more efficient than MPX in
O |||||||||||||||||||| '{? ||||||||
0 200 400 600 800 21E+10 most cases.

CFreq. / SFreq.

The impact of bound-checking frequency (CFreq) and
permission-switching frequency (SFreq) on performance.



I Real-world Applications

* SEIMI is more
protecting the real-world applications.

than ViPX-based and VIPK-based schemes on

OCFI | CPI AG
Applications IH MPX  MPK SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
Lighttpd 294%  342%  574%  4.46% | 277%  685%  633%  378% | 1.70% 6.83% 3.42% = 2.46% — — — —
Openlitespeed | 1.44%  539%  388%  1.61% | 1.04%  1.92%  339%  142% | 091% 2.89% 2.99%  1.38% — — — —
MySQL 1.75%  12.09%  8.08%  379% | 3.17%  9.60% 11.99%  3.94% — — — — — — — —
SQLite 1.61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 13.12% 10.31% | 118%  281%  536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  746%  274% | 238%  557%  8.13%  3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  792% 10.09% = 5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  8.01%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 22.87%  39.65% 2681% | 20.69% 3834% 47.77%  31.82% — — — — — — — —
SpiderMonkey | 1.75%  932%  7.63%  4.15% | 184%  756%  7179%  5.19% — — — — — — — —

All overheads are normalized to the unprotected applications. “—

”’ represents the defense failed to compile or runit.



I Real-world Applications

* SEIMI is more
protecting the real-world applications.

than ViPX-based and VIPK-based schemes on

— SEIMI is much more efficient than MPK for all 32 cases.

OCFI | | CPI AG
Applications IH MPX  MPK SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
Lighttpd 294%  342%  574%  4.46% | 277%  685%  633%  378% | 1.70% 6.83% 3.42% = 2.46% — — — —
Openlitespeed | 1.44%  539%  388%  1.61% | 1.04%  1.92%  339%  142% | 091% 2.89% 2.99%  1.38% — — — —
MySQL 1.75%  12.09%  8.08%  379% | 3.17%  9.60% 11.99%  3.94% — — — — — — — —
SQLite 1.61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 13.12% 10.31% | 118%  281%  536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  746%  274% | 238%  557%  8.13%  3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  7.92% 10.09%  5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  8.01%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 22.87%  39.65% 2681% | 20.69% 3834% 47.77%  31.82% — — — — — — — —
SpiderMonkey | 1.75%  932%  7.63%  4.15% | 184%  756%  7179%  5.19% — — — — — — — —

All overheads are normalized to the unprotected applications. “—

”’ represents the defense failed to compile or runit.



Real-world Applications

* SEIMI is more than VIPX-based and VIPK-based schemes on
protecting the real-world applications.

— SEIMI is much more efficient than MPK for all 32 cases.
— SEIMI is much more efficient than MIPX for 28 cases.

| OCFI | SS | CPI | AG
Applications 1y MpX  MPK  SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI| IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
Lighttpd 294%  342%  574%  4.46% | 277%  685%  633%  378% | 1.70% 6.83% 3.42% = 2.46% — — — —
Openlitespeed | 1.44%  539%  388%  1.61% | 1.04%  1.92%  339%  142% | 091% 2.89% 2.99%  1.38% — — — —
MySQL 1.75%  12.09%  8.08%  379% | 3.17%  9.60% 11.99%  3.94% — — — — — — — —
SQLite 1.61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 13.12% 10.31% | 118%  281%  536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  746%  274% | 238%  557%  8.13%  3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  7.92% 10.09%  5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  8.01%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 22.87%  39.65% 2681% | 20.69% 3834% 47.77%  31.82% — — — — — — — —
SpiderMonkey | 1.75%  932%  7.63%  4.15% | 184%  756%  7179%  5.19% — — — — — — — —

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.



I Conclusion @

We propose a highly efficient intra-process memory isolation technique
SEIMI, which leverages the widely used hardware feature — SMAP.

To avoid introducing security threats, we propose multiple new techniques
to ensure the user code run in ring 0 securely.

We believe that SEIMI can not only benefit existing defenses, but also open
the new research direction ...

— Enabling the efficient access to a variety of privileged hardware features, which does

not require context switch, to defenses.



IAny Questions ?

Q|
I

wangzhe12@ict.ac.cn




	SEIMI: Efficient and Secure SMAP-Enabled�Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Threat Model
	Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Outline
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— Challenges in SEIMI
	High-level Design —— Challenges in SEIMI
	High-level Design —— Challenges in SEIMI
	Outline
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Outline
	System Overview 
	System Overview 
	System Overview 
	System Overview
	System Overview
	System Overview
	SEIMI —— Compilation Phase
	SEIMI —— Compilation Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Some Implementations
	Outline
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Real-world Applications
	Real-world Applications
	Real-world Applications
	Conclusion
	Any Questions ?

