
SEIMI: Efficient and Secure SMAP-Enabled
Intra-process Memory Isolation

Zhe Wang1, Chenggang Wu1, Mengyao Xie1, Yinqian Zhang2, Kangjie Lu3,
Xiaofeng Zhang1, Yuanming Lai1, Yan Kang1, and Min Yang4

1Institute of Computing Technology, Chinese Academy of Sciences,
2The Ohio State University, 3University of Minnesota at Twin-Cities, 4Fudan University

Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...

Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.

Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.

Intra-process Memory Isolation

Isolated
Memory

Regular
Memory

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.

Intra-process Memory Isolation

*ptr

Isolated
Memory

Regular
Memory

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.

Intra-process Memory Isolation

*ptr

Isolated
Memory

Regular
Memory

CHECK(ptr)

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.

Intra-process Memory Isolation

*ptr

Isolated
Memory

Regular
Memory

CHECK(ptr)

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.

Intra-process Memory Isolation

Isolated
Memory

Regular
Memory

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.
– Intel MPK changes permissions of pages.

Intra-process Memory Isolation

Isolated
Memory

Regular
Memory

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.
– Intel MPK changes permissions of pages.

*ptr

*ptr

*ptr

Intra-process Memory Isolation

Isolated
Memory

Regular
Memory

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.
– Intel MPK changes permissions of pages.

*ptr
Readable/Writable

Readable/Writable

*ptr

*ptr

Intra-process Memory Isolation

• Memory corruption defenses need to keep their metadata safe.
– The safe region in CPI, the shadow stack in CFI, the randomization secrets in ...
– The software-based randomization method has been proven to be vulnerable.

• The strict memory isolations for the metadata in defenses are needed.
– Intel MPX uses bounds checks for isolation.
– Intel MPK changes permissions of pages.

But they are not efficient enough as we expect.

Threat Model

• We consider a defense that protects a vulnerable application against
memory corruption attacks.
– Web servers, databases or browsers.

• The design of this defense is secure:
– Breaking memory isolation is a prerequisite for compromising the defense (e.g.,

attackers cannot hijack the control flow before it).

• Attackers’ capabilities:
– Arbitrary read and write by exploiting memory corruption vulnerabilities.

Outline

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation

Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

The user-mode hardware features are not fast.

Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

The user-mode hardware features are not fast.

How about the privileged hardware feature ?

Motivation

• Problem:
– Hardware-assisted memory isolations could achieve better performance.
– But existing methods are not fast enough for isolating in the user-mode process.

The user-mode hardware features are not fast.

How about the privileged hardware feature ?

Is there a privileged hardware feature which is more
efficient than Intel MPX/MPK for the memory isolation ???

Motivation —— SMAP in Processors 101

• To prevent the kernel from inadvertently
accessing malicious data in user space,
– dereferencing a corrupted data pointer

Kernel Space

User Space

malicious payload

corrupted pointer

Motivation —— SMAP in Processors 101

• To prevent the kernel from inadvertently
accessing malicious data in user space,
– dereferencing a corrupted data pointer

• Intel and AMD provide the Supervisor-
mode Access Prevention (SMAP)
hardware feature to disable the kernel
access to the user space memory.

Kernel Space

User Space

malicious payload

corrupted pointer

SMAP

Motivation —— SMAP in Processors 101

• Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
– Divided by the U/S bit in the page table entry.

Motivation —— SMAP in Processors 101

• Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
– Divided by the U/S bit in the page table entry.

• SMAP disallows the code access to the U-page in the supervisor-mode.
– S-mode is short for supervisor-mode (ring 0-2).
– U-mode is short for user mode (ring 3).

Motivation —— SMAP in Processors 101

• Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
– Divided by the U/S bit in the page table entry.

• SMAP disallows the code access to the U-page in the supervisor-mode.
– S-mode is short for supervisor-mode (ring 0-2).
– U-mode is short for user mode (ring 3).

Ring 0 Ring 1 Ring 2 Ring 3
Privileged Instruction Fetch
S-page Access Permission
U-page Access Permission

SMAP is disabled

Motivation —— SMAP in Processors 101

• Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
– Divided by the U/S bit in the page table entry.

• SMAP disallows the code access to the U-page in the supervisor-mode.
– S-mode is short for supervisor-mode (ring 0-2).
– U-mode is short for user mode (ring 3).

Ring 0 Ring 1 Ring 2 Ring 3
Privileged Instruction Fetch
S-page Access Permission
U-page Access Permission

SMAP is enabled

Motivation —— SMAP in Processors 101

• X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
– When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

Motivation —— SMAP in Processors 101

• X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
– When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

• POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
– popfq could be execute in S-mode (ring 0-2).
– stac/clac are privileged instructions that can only be execute in ring 0.

Motivation —— SMAP in Processors 101

• X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
– When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

• POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
– popfq could be execute in S-mode (ring 0-2).
– stac/clac are privileged instructions that can only be execute in ring 0.

Instructions Cycles Description
wrpkru 18.9 Update the access right of a pkey in Intel MPK
popfq 22.4 Pop stack into the RFLAGS register.
stac/clac 8.6 Set/Clear the AC flag in the RFLAGS register.

Motivation —— SMAP in Processors 101

• X86 processors provide a RFLAGS.AC flag to disable/enable SMAP.
– When the RFLAGS.AC flag is set in S-mode, SMAP is disabled.

• POPFQ and STAC/CLAC could modify the RFLAGS.AC flag.
– popfq could be execute in S-mode (ring 0-2).
– stac/clac are privileged instructions that can only be execute in ring 0.

Instructions Cycles Description
wrpkru 18.9 Update the access right of a pkey in Intel MPK
popfq 22.4 Pop stack into the RFLAGS register.
stac/clac 8.6 Set/Clear the AC flag in the RFLAGS register.

Intel SMAP is more efficient than Intel MPK for controlling memory access permission.

Outline

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation

High-level Design —— SEIMI

• The Memory Layout Setting
– The isolated memory region are set to be U-pages.
– Other memory regions are set to be S-pages.

• The Running State Setting
– The process runs in ring 0, due to the stac/clac are privileged instructions.

High-level Design —— SEIMI

• The Memory Layout Setting
– The isolated memory region are set to be U-pages.
– Other memory regions are set to be S-pages.

• The Running State Setting
– The process runs in ring 0, due to the stac/clac are privileged instructions.

S-page

Regular Memory Region Isolated Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

High-level Design —— SEIMI

• The Memory Layout Setting
– The isolated memory region are set to be U-pages.
– Other memory regions are set to be S-pages.

• The Running State Setting
– The process runs in ring 0, due to the stac/clac are privileged instructions.

S-page

Regular Memory Region Isolated Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

SMAP is disabled

High-level Design —— SEIMI

• The Memory Layout Setting
– The isolated memory region are set to be U-pages.
– Other memory regions are set to be S-pages.

• The Running State Setting
– The process runs in ring 0, due to the stac/clac are privileged instructions.

S-page

Regular Memory Region Isolated Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

SMAP is enabled

High-level Design —— SEIMI

• Problem:
– Running untrusted code in ring 0 may corrupt the OS kernel.

High-level Design —— SEIMI

• Problem:
– Running untrusted code in ring 0 may corrupt the OS kernel.

• Our Solution —— Placing the OS kernel in “ring -1”
– Using the Intel VT-x technique to separate the target application and the OS kernel

VMX non-root (guest)

Ring 3

VMX root (host)

Ring 0
Ring 1

Ring 2
Ring 3

Ring 0
Ring 1

Ring 2
Ring 3

VM Exit

VM Entry

Intel VT-x

High-level Design —— SEIMI

• Problem:
– Running untrusted code in ring 0 may corrupt the OS kernel.

• Our Solution —— Placing the OS kernel in “ring -1”.
– Using the Intel VT-x technique to separate the target application and the OS kernel

VMX non-root (guest)

Ring 3

VMX root (host)

Ring 0
Ring 1

Ring 2
Ring 3

Ring 0
Ring 1

Ring 2
Ring 3

Target Process OS Kernel

VM Exit

VM Entry

Intel VT-x

High-level Design —— Challenges in SEIMI

• C-1: Distinguishing SMAP reads and writes.
– Sensitive data may require only integrity protection.
– Preventing reads from untrusted code can lead to unnecessary overhead.

High-level Design —— Challenges in SEIMI

• C-1: Distinguishing SMAP reads and writes.
– Sensitive data may require only integrity protection.
– Preventing reads from untrusted code can lead to unnecessary overhead.

• C-2: Preventing the leaking/manipulating of the privileged data structures.
– In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
– Some data structures are privileged, e.g., the page tables.

High-level Design —— Challenges in SEIMI

• C-1: Distinguishing SMAP reads and writes.
– Sensitive data may require only integrity protection.
– Preventing reads from untrusted code can lead to unnecessary overhead.

• C-2: Preventing the leaking/manipulating of the privileged data structures.
– In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
– Some data structures are privileged, e.g., the page tables.

• C-3: Preventing the abusing of the privileged hardware features.
– Besides the stac/clac, other privileged instructions can also run in ring 0.

Outline

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation

Approaches Overview —— Challenge-1

• C-1: Distinguishing SMAP reads and writes.

• Solution —— The shared-memory based read/write separation method.

Approaches Overview —— Challenge-1

• C-1: Distinguishing SMAP reads and writes.

• Solution —— The shared-memory based read/write separation method.

S-page

Regular Memory Region Isolated Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

SMAP is enabled

Approaches Overview —— Challenge-1

• C-1: Distinguishing SMAP reads and writes.

• Solution —— The shared-memory based read/write separation method.

S-page

Regular Memory Region Isolated Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

S S S S
RO

SMAP is enabled

Approaches Overview —— Challenge-1

• C-1: Distinguishing SMAP reads and writes.

• Solution —— The shared-memory based read/write separation method.

S-page

Regular Memory Region

Heap (RW)

Access Denied

S S S S S S U U U URing 0
Stack (RW) Code (RX) RW

S U-pageU

S S S S
RO

SMAP is enabled

These Two Regions are Shared

Approaches Overview —— Challenge-2

• C-2: Preventing the leaking/manipulating of the privileged data structures.

Approaches Overview —— Challenge-2

• C-2: Preventing the leaking/manipulating of the privileged data structures.

• Observation:
– The operations to these structures are only performed when the process accesses

the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

Approaches Overview —— Challenge-2

• C-2: Preventing the leaking/manipulating of the privileged data structures.

• Observation:
– The operations to these structures are only performed when the process accesses

the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

• Solution:
– Placing the privileged data structures and their operations into the VMX root mode.
– We leverage the Intel VT-x technique to force all these events to trigger VM exits

and enter into the VMX root mode.

Approaches Overview —— Challenge-3

• C-3: Preventing the abusing of the privileged hardware features.

Approaches Overview —— Challenge-3

• C-3: Preventing the abusing of the privileged hardware features.

• Solution:
– SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Approaches Overview —— Challenge-3

• C-3: Preventing the abusing of the privileged hardware features.

• Solution:
– SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Triggering the VM exits and stopping the execution;

Approaches Overview —— Challenge-3

• C-3: Preventing the abusing of the privileged hardware features.

• Solution:
– SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Triggering the VM exits and stopping the execution;

Invalidating the execution effects;

Approaches Overview —— Challenge-3

• C-3: Preventing the abusing of the privileged hardware features.

• Solution:
– SEIMI sanitizes the execution of all privileged instructions in the VMX non-root mode.

Triggering the VM exits and stopping the execution;

Invalidating the execution effects;

Raising processor exceptions and disabling the execution.

Outline

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation

System Overview

• SEIMI is implemented on Linux/X86_64 platform.

System Overview

• SEIMI is implemented on Linux/X86_64 platform.
• Two Phases in SEIMI —— Compilation Phase and Runtime Phase

System Overview

ELF

Source Code library.a

Compilation phase
Users could use the SEIMI’s APIs to
management the isolated memory region.

• SEIMI is implemented on Linux/X86_64 platform.
• Two Phases in SEIMI —— Compilation Phase and Runtime Phase

System Overview

ELF

Source Code library.a

Load & Run

Compilation phase
Users could use the SEIMI’s APIs to
management the isolated memory region.

• SEIMI is implemented on Linux/X86_64 platform.
• Two Phases in SEIMI —— Compilation Phase and Runtime Phase

System Overview

ELF

Source Code library.a

Load & Run

Compilation phase
Users could use the SEIMI’s APIs to
management the isolated memory region.

Runtime Phase
The core of SEIMI is a kernel module which monitors
the startup of the target application and places it into
ring 0 of the VMX non-root mode.

• SEIMI is implemented on Linux/X86_64 platform.
• Two Phases in SEIMI —— Compilation Phase and Runtime Phase

System Overview

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
Kernel

ELF

Source Code library.a

Load & Run

Compilation phase
Users could use the SEIMI’s APIs to
management the isolated memory region.

Runtime Phase
The core of SEIMI is a kernel module which monitors
the startup of the target application and places it into
ring 0 of the VMX non-root mode.

• SEIMI is implemented on Linux/X86_64 platform.
• Two Phases in SEIMI —— Compilation Phase and Runtime Phase

SEIMI —— Compilation Phase

ELF

Source Code library.a

• SEIMI provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

Compilation phase

SEIMI —— Compilation Phase

ELF

Source Code library.a

• SEIMI provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

Compilation phase

SEIMI —— Runtime Phase

• The core of SEIMI is a kernel module, includes three key components.

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
Kernel

Runtime Phase

SEIMI —— Runtime Phase

• The core of SEIMI is a kernel module, includes three key components.

Memory Management Component
– Configures the regular/isolated memory region.

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
Kernel

Runtime Phase

SEIMI —— Runtime Phase

• The core of SEIMI is a kernel module, includes three key components.

Memory Management Component
– Configures the regular/isolated memory region.

Privileged Instructions Prevention Component
– Prevents these instructions from being abused.

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
Kernel

Runtime Phase

SEIMI —— Runtime Phase

• The core of SEIMI is a kernel module, includes three key components.

Memory Management Component
– Configures the regular/isolated memory region.

Privileged Instructions Prevention Component
– Prevents these instructions from being abused.

Events Redirection Component
– Handles system calls, interrupts, exceptions, and Linux signals.

HW(VMX root, Ring 0)

OS Kernel

Kernel Module

HW(VMX root, Ring 3)

Other Processes
HW(VMX non-root, Ring 0)

Target Process

User
Kernel

Runtime Phase

SEIMI —— Memory Management Component

• A shadow mechanism for (only) page-table root.
– The guest/host page-tables share the last three-level page table entries.
– Flipping the U/S bit to set the U-page and S-page neatly.

SEIMI —— Memory Management Component

• A shadow mechanism for (only) page-table root.
– The guest/host page-tables share the last three-level page table entries.
– Flipping the U/S bit to set the U-page and S-page neatly.

SEIMI —— Memory Management Component

• A shadow mechanism for (only) page-table root.
– The guest/host page-tables share the last three-level page table entries.
– Flipping the U/S bit to set the U-page and S-page neatly.

SEIMI —— Memory Management Component

• A shadow mechanism for (only) page-table root.
– The guest/host page-tables share the last three-level page table entries.
– Flipping the U/S bit to set the U-page and S-page neatly.

Entries in PML4 Size(TB) Description Type

#0 ~ #254 127.5 Regular Memory S-page

#255 0.5 Isolated Memory U-page

#255 ~ #511 128.0 Kernel Space NULL

SEIMI —— Memory Management Component

• Support the read-only isolated S-page memory region.
– Flipping the R/W bit to set the read-only permission neatly.

SEIMI —— Memory Management Component

• Support the read-only isolated S-page memory region.
– Flipping the R/W bit to set the read-only permission neatly.

Entries in PML4 Size(TB) Description Type

#0 ~ #253 127 Regular Memory S-page

#254 0.5 Isolated Memory S-page

#255 0.5 Isolated Memory U-page

#255 ~ #511 128 Kernel Space NULL

SEIMI —— Memory Management Component

• Support the read-only isolated S-page memory region.
– Flipping the R/W bit to set the read-only permission neatly.

Entries in PML4 Size(TB) Description Type

#0 ~ #253 127 Regular Memory S-page

#254 0.5 Isolated Memory S-page

#255 0.5 Isolated Memory U-page

#255 ~ #511 128 Kernel Space NULL

SEIMI —— Privileged Instruction Prevention Component

• We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86_64.

SEIMI —— Privileged Instruction Prevention Component

• We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86_64.

• Our identification method:

Automated filtering
– We embed each instruction with

random operands into a test program
and run it in ring 3.

– By capturing the #GP and the #UD, we
automatically and completely filter all
privileged instructions.

SEIMI —— Privileged Instruction Prevention Component

• We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86_64.

• Our identification method:

Automated filtering
– We embed each instruction with

random operands into a test program
and run it in ring 3.

– By capturing the #GP and the #UD, we
automatically and completely filter all
privileged instructions.

Manual Verification
– We manually review the description

of all X86 instructions by reading the
Intel Software Developers’ Manual.

– Confirm the first step is complete,
and also find the instructions that
behave differently in ring 0 and ring 3.

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

Line Detailed Instructions Is Privileged
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

Triggering VM Exit and Stopping Execution.
• Using the Intel VT-x technique to configure

the VM exits directly.

Line Detailed Instructions Is Privileged
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y

1

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

Triggering VM Exit and Stopping Execution.
• Using the Intel VT-x technique to configure

the VM exits directly.

Invalidating the Execution Effects.
• The execution does not change any state.

Line Detailed Instructions Is Privileged
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y

1

2

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

Triggering VM Exit and Stopping Execution.
• Using the Intel VT-x technique to configure

the VM exits directly.

Invalidating the Execution Effects.
• The execution does not change any state.

Raising the Execution Exception and Stopping
Execution.
• Configure the execution condition.

Line Detailed Instructions Is Privileged
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y

1

2
3

SEIMI —— Privileged Instruction Prevention Component
• We group them into 20 categories based on their different functionality.

Triggering VM Exit and Stopping Execution.
• Using the Intel VT-x technique to configure

the VM exits directly.

Invalidating the Execution Effects.
• The execution does not change any state.

Raising the Execution Exception and Stopping
Execution.
• Configure the execution condition.

Line Detailed Instructions Is Privileged
Instruction?

1 VM[RESUME|READ|WRITE|…], INVEPT, INVVPID Y
2 INVD. XSETBV Y
3 ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD…) Y
4 RDMSR, WRMSR Y
5 IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD] Y
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD Y
7 LGDT, LLDT, LTR, LIDT Y
8 MOV to/from DR0-DR7 Y
9 MOV to/from CR3, MOV to/from CR8 Y
10 MOV to/from CR0/CR4, CLTS, LMSW, SMSW Y
11 MOV to/from CR2 Y
12 SWAPGS Y
13 CLI, STI Y
14 LAR, LSL. VERR, VERW N
15 POPF, POPFQ N
16 L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS] N
17 Far CALL, Far RET, Far JMP N
18 IRET, IRETD, IRETQ Y
19 SYSEXIT, SYSRET Y
20 XSAVES, XRSTORS, INVPCID Y

1

2
3

SEIMI —— Privileged Instruction Prevention Component

Raising the Execution Exception.
– We choose to raise an exception during their execution and to trigger the VM exits.

SEIMI —— Privileged Instruction Prevention Component

Raising the Execution Exception.
– We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
– xsaves, xrstors, invpcid … via configuring the VMCS to disable the support in guest.

SEIMI —— Privileged Instruction Prevention Component

Raising the Execution Exception.
– We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
– xsaves, xrstors, invpcid … via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception)
– sysexit, sysret…due to the S-page setting in all code pages.

SEIMI —— Privileged Instruction Prevention Component

Raising the Execution Exception.
– We choose to raise an exception during their execution and to trigger the VM exits.

Raising the #UD (invalid opcode exception)
– xsaves, xrstors, invpcid … via configuring the VMCS to disable the support in guest.

Raising the #PF (page fault exception)
– sysexit, sysret…due to the S-page setting in all code pages.

Raising the #GP (general protection exception)
– Segment-switching related instructions: mov to %ds, lcall…

SEIMI —— Privileged Instruction Prevention Component

• Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

SEIMI —— Privileged Instruction Prevention Component

• Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

• Problem:
– Intel VT-x cannot intercept these instructions that could change the segment.

SEIMI —— Privileged Instruction Prevention Component

• Since the application runs in ring 0, attackers may use the segment-
switching instructions to switch to any segment, we need to control them.

• Problem:
– Intel VT-x cannot intercept these instructions that could change the segment.

How to intercept this type of instructions ???

SEIMI —— Privileged Instruction Prevention Component

• Observation
– When changing a segment register, the hardware will use the target selector to

access the segment descriptor table to obtain the target segment information.

SEIMI —— Privileged Instruction Prevention Component

• Observation
– When changing a segment register, the hardware will use the target selector to

access the segment descriptor table to obtain the target segment information.
– If the segment descriptor table is empty, the CPU will raise a general protection

exception (#GP) in this process.

SEIMI —— Privileged Instruction Prevention Component

• Observation
– When changing a segment register, the hardware will use the target selector to

access the segment descriptor table to obtain the target segment information.
– If the segment descriptor table is empty, the CPU will raise a general protection

exception (#GP) in this process.

• Solution —— Emptying out this table to intercept such instructions.

SEIMI —— Privileged Instruction Prevention Component

• Observation
– When changing a segment register, the hardware will use the target selector to

access the segment descriptor table to obtain the target segment information.
– If the segment descriptor table is empty, the CPU will raise a general protection

exception (#GP) in this process.

• Solution —— Emptying out this table to intercept such instructions.

• Problem:
– How to ensure the normal execution (segment addressing)?
– How to ensure the correct functionality of the segment-switching instructions?

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base, Limit, Access
%ds: Visible Part Hidden Part

Selector

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base, Limit, Access
%ds: Visible Part Hidden Part

Selector

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.

Base, Limit, Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base, Limit, Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base, Limit, Access
%ds: Visible Part Hidden Part

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

Filling the correct information into
the cache via configuring the VMCS.

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base, Limit, Access
%ds: Visible Part Hidden Part

VMCS

Base, Limit, Access

CS/SS/DS...GS:
Guest

Selector

…
②

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

Filling the correct information into
the cache via configuring the VMCS.

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base, Limit, Access
%ds: Visible Part Hidden Part

VMCS

Base, Limit, Access

CS/SS/DS...GS:
Guest

Selector

…
②

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

Filling the correct information into
the cache via configuring the VMCS.

At last, emptying
out the segment
descriptor table.

LDT Descriptor
GDT

Base,Limit,Access
LDT

mov %ds:(%rax), %rbx

LDTRGDTR

SEIMI —— Privileged Instruction Prevention Component

• Segment-switching exception using descriptor cache.
– X86 allows the descriptor cache to be inconsistent with the descriptor table.

Base, Limit, Access
%ds: Visible Part Hidden Part

VMCS

Base, Limit, Access

CS/SS/DS...GS:
Guest

Selector

…
②

mov to %ds
①

Selector
Segment-switching instruction
will load the information into
the descriptor cache.

Filling the correct information into
the cache via configuring the VMCS.

At last, emptying
out the segment
descriptor table.

Emulating the function of the normal
segment-switching instructions.

SEIMI —— Privileged Instruction Prevention Component

Invalidating the Execution Effects.
– We invalidate their execution effects, thus preventing attackers from using these

instructions to obtain information or change any state.

SEIMI —— Privileged Instruction Prevention Component

Invalidating the Execution Effects.
– We invalidate their execution effects, thus preventing attackers from using these

instructions to obtain information or change any state.

• CR0/CR4-related instructions.
– Configure guest/host masks and read shadows in VMCS.
– The value of the %CR0/%CR4 read is all 0.
– Write to them does not really modify the values;

SEIMI —— Privileged Instruction Prevention Component

Invalidating the Execution Effects.
– We invalidate their execution effects, thus preventing attackers from using these

instructions to obtain information or change any state.

• CR0/CR4-related instructions.
– Configure guest/host masks and read shadows in VMCS.
– The value of the %CR0/%CR4 read is all 0.
– Write to them does not really modify the values;

• SWAPGS, L[AR/SL], VER[R/W], CLI/STI …
– More details are in the paper.

SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.

SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.

• Interrupts and Exceptions Handling
– All these events trigger the VM exit via configuring the VMCS.
– The kernel module checks the call gates and vectors the IDT.

SEIMI —— Events Redirection Component

• System-call Handling
– Convert the system calls to the hypercalls via mapping a code page.

• Containing two instructions: VMCALL and JMP *%RCX.
• The IA32_LSTAR MSR register in guest points to this page.

– The kernel module vectors the system_call_table and calls the handlers.

• Interrupts and Exceptions Handling
– All these events trigger the VM exit via configuring the VMCS.
– The kernel module checks the call gates and vectors the IDT.

• Linux Signal Handling
– Check the signal queue, and switch the context via configuring the VMCS.

SEIMI —— Some Implementations

• Memory Management Implementations
– Avoiding overlaps in the 254th and 255th entries.
– Handling the VSYSCALL page.
– Tracking updates of the PML4 page.
– Avoiding accessing the kernel by exploiting the TLB.

• Other Implementations
– Hardening system calls against confused deputy.
– Starting and exiting the target process.

– Supporting multi-threading and multi-processes.
– Defeating the concurrent attacks.

Outline

Motivation

High-level Design

Approach Overview

SEIMI System

Evaluation

Performance Evaluation

• Defenses and Isolation Schemes:
– Defenses: O-CFI, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)

– Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

Performance Evaluation

• Defenses and Isolation Schemes:
– Defenses: O-CFI, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)

– Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

• Microbenchmark —— the overheads imposed by SEIMI on kernel operations.
– lmbench v3.0-a9

Performance Evaluation

• Defenses and Isolation Schemes:
– Defenses: O-CFI, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)

– Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

• Microbenchmark —— the overheads imposed by SEIMI on kernel operations.
– lmbench v3.0-a9

• Macrobenchmark —— the overheads on different isolation schemes.
– SPEC CPU2006 C/C++ benchmark with the ref input.

Performance Evaluation

• Defenses and Isolation Schemes:
– Defenses: O-CFI, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)

– Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

• Microbenchmark —— the overheads imposed by SEIMI on kernel operations.
– lmbench v3.0-a9

• Macrobenchmark —— the overheads on different isolation schemes.
– SPEC CPU2006 C/C++ benchmark with the ref input.

• Real-world applications:
– 4 Web servers: Nginx, Apache, Lighttpd, and Openlitespeed.
– 4 Databases: MySQL, SQLite, Redis, and Memcached.

– 4 JavaScript engines: ChakraCore, Google V8, JavaScriptCore, SpiderMonkey.

Microbenchmark —— lmbench

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.

Microbenchmark —— lmbench

Latency on process-related kernel operations
(in μs): smaller is better.

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.

Microbenchmark —— lmbench

Latency on process-related kernel operations
(in μs): smaller is better. Context-switching latency (in μs): smaller is better.

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.

Microbenchmark —— lmbench

Latency on process-related kernel operations
(in μs): smaller is better. Context-switching latency (in μs): smaller is better.

File & VM system latency (in μs): smaller is
better.

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.

Microbenchmark —— lmbench

Latency on process-related kernel operations
(in μs): smaller is better. Context-switching latency (in μs): smaller is better.

File & VM system latency (in μs): smaller is
better.

Local-communication latency (in μs): smaller
is better.

• We run lmbench directly on SEIMI to only evaluate the overhead on kernel operations.

Macrobenchmark —— SPEC CPU 2006 benchmark

• Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%.

Macrobenchmark —— SPEC CPU 2006 benchmark

• Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%.

• Compared to the MPK-based scheme, SEIMI is more efficient in almost all test cases,
and with the average reduction of 42.3% (maximum is 133.33%).

Macrobenchmark —— SPEC CPU 2006 benchmark

The impact of permission-switching frequency
on performance of MPK and SEIMI.

• Performance Analysis: MPK vs. SEIMI

Macrobenchmark —— SPEC CPU 2006 benchmark

The impact of permission-switching frequency
on performance of MPK and SEIMI.

Compared to MPK, as the access
permission switching frequency
increases, the performance gain of
SEIMI becomes more apparent.

• Performance Analysis: MPK vs. SEIMI

Macrobenchmark —— SPEC CPU 2006 benchmark

The impact of bound-checking frequency (CFreq) and
permission-switching frequency (SFreq) on performance.

• Performance Analysis: MPX vs. SEIMI

Macrobenchmark —— SPEC CPU 2006 benchmark

The impact of bound-checking frequency (CFreq) and
permission-switching frequency (SFreq) on performance.

When the bound-checking
frequency is 52 times of the access
permission switching frequency,
SEIMI is more efficient than MPX in
most cases.

• Performance Analysis: MPX vs. SEIMI

Real-world Applications

• SEIMI is more performant than MPX-based and MPK-based schemes on
protecting the real-world applications.

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.

Real-world Applications

• SEIMI is more performant than MPX-based and MPK-based schemes on
protecting the real-world applications.
– SEIMI is much more efficient than MPK for all 32 cases.

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.

Real-world Applications

• SEIMI is more performant than MPX-based and MPK-based schemes on
protecting the real-world applications.
– SEIMI is much more efficient than MPK for all 32 cases.
– SEIMI is much more efficient than MPX for 28 cases.

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.

Conclusion

• We propose a highly efficient intra-process memory isolation technique
SEIMI, which leverages the widely used hardware feature — SMAP.

• To avoid introducing security threats, we propose multiple new techniques
to ensure the user code run in ring 0 securely.

• We believe that SEIMI can not only benefit existing defenses, but also open
the new research direction …
– Enabling the efficient access to a variety of privileged hardware features, which does

not require context switch, to defenses.

Any Questions ?

wangzhe12@ict.ac.cn

	SEIMI: Efficient and Secure SMAP-Enabled�Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Intra-process Memory Isolation
	Threat Model
	Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Motivation —— SMAP in Processors 101
	Outline
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— SEIMI
	High-level Design —— Challenges in SEIMI
	High-level Design —— Challenges in SEIMI
	High-level Design —— Challenges in SEIMI
	Outline
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-1
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-2
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Approaches Overview —— Challenge-3
	Outline
	System Overview
	System Overview
	System Overview
	System Overview
	System Overview
	System Overview
	SEIMI —— Compilation Phase
	SEIMI —— Compilation Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Runtime Phase
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Memory Management Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Privileged Instruction Prevention Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Events Redirection Component
	SEIMI —— Some Implementations
	Outline
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Microbenchmark —— lmbench
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Macrobenchmark —— SPEC CPU 2006 benchmark
	Real-world Applications
	Real-world Applications
	Real-world Applications
	Conclusion
	Any Questions ?

