
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023 4477

SPECWANDS: An Efficient Priority-Based
Scheduler Against Speculation Contention Attacks
Bowen Tang , Chenggang Wu , Pen-Chung Yew , Life Fellow, IEEE, Yinqian Zhang , Mengyao Xie ,

Yuanming Lai , Yan Kang , Wei Wang , Qiang Wei , and Zhe Wang

Abstract—Transient execution attacks (TEAs) have gradually
become a major security threat to modern high-performance
processors. They exploit the vulnerability of speculative execu-
tion to illegally access private data, and transmit them through
timing-based covert channels. While new vulnerabilities are dis-
covered continuously, the covert channels can be categorized
to two types: 1) Persistent Type, in which covert channels are
based on the layout changes of buffering, e.g., through caches or
TLBs and 2) Volatile Type, in which covert channels are based on
the contention of sharing resources, e.g., through execution units
or issuing ports. The defenses against the persistent-type covert
channels have been well addressed, while those for the volatile-
type are still rather inadequate. Existing mitigation schemes
for the volatile type such as Speculative Compression and Time-
Division-Multiplexing will introduce significant overhead due to
the need to stall the pipeline or to disallow resource sharing. In
this article, we look into such attacks and defenses with a new
perspective, and propose a scheduling-based mitigation scheme,
called SPECWANDS. It consists of three priority-based schedul-
ing policies to prevent an attacker from transmitting the secret
in different contention situations. SPECWANDS not only can
defend against both interthread and intrathread-based attacks
but also can keep most of the performance benefit from spec-
ulative execution and resource-sharing. We evaluate its runtime
overhead on SPEC 2017 benchmarks and realistic programs.
The experimental results show that SPECWANDS has a signifi-
cant performance advantage over the other two representative
schemes.

Manuscript received 15 December 2022; revised 16 April 2023; accepted
26 May 2023. Date of publication 8 June 2023; date of current version
22 November 2023. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 61902374, Grant
U1736208, and Grant 62272442; and in part by the Innovation Funding of
ICT, CAS under Grant E161040. This article was recommended by Associate
Editor S. Ghosh. (Corresponding author: Zhe Wang.)

Bowen Tang, Mengyao Xie, Yuanming Lai, Yan Kang, and Wei Wang
are with SKLP, Institute of Computing Technology, CAS, Beijing 100190,
China, and also with the University of Chinese Academy of Sciences,
Beijing 100049, China (e-mail: tangbowen@ict.ac.cn; xiemengyao@ict.ac.cn;
laiyuanming@ict.ac.cn; kangyan@ict.ac.cn; wangwei2021@ict.ac.cn).

Chenggang Wu and Zhe Wang are with SKLP, Institute of Computing
Technology, CAS, Beijing 100190, China, also with the University of Chinese
Academy of Sciences, Beijing 100049, China, and also with Zhongguancun
Laboratory, Beijing, China (e-mail: wucg@ict.ac.cn; wangzhe12@ict.ac.cn).

Pen-Chuang Yew is with the Computer Science and Engineering
Department, University of Minnesota-Twin Cities, Minneapolis, MN 55455
USA (e-mail: yew@umn.edu).

Yinqian Zhang is with the Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen
518055, China (e-mail: yinqianz@acm.org).

Qiang Wei is with the State Key Laboratory of Mathematical
Engineering and Advanced Computing, Zhengzhou 450000, China (e-mail:
prof_weiqiang@163.com).

Digital Object Identifier 10.1109/TCAD.2023.3284290

Index Terms—Resource contention, scheduling strategy, simul-
taneous multithreading (SMT), transient execution attack (TEA).

I. INTRODUCTION

S IMULTANEOUS multithreading (SMT), also known as
hyper-threading, has become an important feature on mod-

ern high-performance processors. It allows multiple threads to
run simultaneously on a physical core and share the resources
in the instruction pipeline to cover the slack caused by the
stalled threads, thereby improving the efficiency and through-
put of the pipeline. However, due to the resource sharing
on the pipeline, SMT can introduce new security vulnerabil-
ities. Multiple threads may compete for shared resources and
interfere with each other’s execution under the common first-
come–first-served (FCFS) policy. If an attacker can control
one thread, he/she can figure out the execution state of other
threads according to the difference in its execution time and
then infer some private information, which is the so-called
SMT contention-based side channel [1], [2], [3].

Such attacks can be mitigated by scheduling mutually dis-
trusting threads on different physical cores. However, the
recent transient execution attacks (TEAs) [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], such as the well-known Meltdown
and Spectre, cannot be defended using such an approach.
It is because an attacker can spawn and control multiple
threads in some attack scenarios. The system cannot distin-
guish which ones are malicious when resource contention
occurs.

Take an example from the work in [14]. It installs a mali-
cious plug-in running on a sandboxed browser to launch such
an attack. Assume two threads are both created by the plug-in
and run on a physical core with SMT. One of them, called
Trojan, leverages speculative execution to access a secret out-
side the sandbox. Trojan thread then issues a burst of requests
to keep the resource busy if the bit to be transmitted is “1,” and
leaves the resource idle if it is “0” instead. The other thread,
called Spy, then attempts to acquire the same resource and
infer the secret value based on whether the resource is busy
or not by measuring its acquisition time. In such an attack sce-
nario, the resource contention is used as a covert channel to
transmit the illegally obtained data from speculative accesses.

To block such covert channels, researchers have proposed
a variety of defenses. One well-known approach is specu-
lation compression (SC) [15], [16], [17], which delays the

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5845-4684
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0001-9653-8777
https://orcid.org/0000-0002-7585-1075
https://orcid.org/0000-0002-8511-1118
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0002-3439-551X
https://orcid.org/0000-0003-1585-8731
https://orcid.org/0000-0003-4891-8657
https://orcid.org/0000-0003-4719-1804

4478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

speculative data to be propagated in the pipeline. That is, if an
operand of an instruction comes from a speculative instruction,
it will not be issued until the speculative instruction it depends
on has become nonspeculative. This approach prevents the
data of a speculative instruction from being transmitted via
the covert channel. However, it will obstruct the speculative
execution (e.g., from branch prediction) that has been the
cornerstone of a modern CPU to improve its performance.
Based on our own simulation results, its performance hit can
be as high as 15% on a typical CPU with SMT. The other
approach is to partition the resources in the spacial or tem-
poral dimensions, such as time-division-multiplexing (TDM),
to avert interthread interference [18], [19], [20]. Although this
approach doesn’t obstruct the speculative execution, it con-
tradicts the original intention of resource sharing using SMT,
and will also incur non-negligible performance overhead (e.g.,
more than 12% overhead according to our evaluation).

Besides the well-known resource contention in SMT,
researchers have found the resource contention also exists
in the single thread scenario, and it can be abused as a
new convert channel [21], [22]. Such attacks exploit the con-
tention caused by multiple instructions scheduled in the same
scheduling window within a thread. These instructions have no
dependence among them, and can be issued simultaneously in
the pipeline that supports multi-issuing and out-of-order exe-
cution. The attacker can use the contention at the issuing port
as a covert channel. Moreover, he/she only needs to launch one
single thread without the need for interthread synchronization.
This kind of attacks, which leverage intrathread covert chan-
nels, thus have a higher probability of success. TDM-based
defense approaches are basically ineffective and are difficult
to harden for this scenario.

In order to defend against the TEAs that exploit resource
contention as a covert channel, which we call speculative con-
tention attacks (SCAs), while minimizing the performance
overhead, we proposed a secure scheduling scheme for
shared resources, called SPECWANDS. The main idea behind
SPECWANDS is to batching multiple operations into groups,
and ensure that each group can share a resource without
any interference from other groups in the same or different
threads. To apply such an idea to different scenarios, we use
the following three priority-based scheduling policies.

1) Nonspeculative Operations have a higher Priority
(NOP): SPECWANDS assigns a higher priority to non-
speculative operations. They not only can be scheduled
ahead of all other speculative operations but also allowed
to preempt the speculative operations already occupying
the resource. This policy can be used as a guideline
for delimit the boundaries of each group, i.e., each
nonspeculative operation is the header of each group.

2) Last-owner-thread’s Operations have a higher Priority
(LOP): When there are multiple speculative operations
from different threads, SPECWANDS assigns a higher
priority to the speculative operations whose owner thread
used the resource most recently. This policy further clus-
ters the speculative operations into groups based on their
owner threads, i.e., their group header nonspeculative
operations.

3) Earlier Operations have a higher Priority (EOP):
Within the same SMT thread, when the operations that
request a resource are all speculative, SPECWANDS

assigns a higher and preemptive priority (similar to the
NOP policy) to the operations that are issued earlier in
program order. Different from NOP and LOP policies,
its purpose is to prevent the backward contention within
a group, i.e., to prevent a later operation from blocking
an earlier operation in the group due to multi-issuing
and out-of-order execution.

The above policies not only maintain the security principle
of speculative noninterference (SNI) [23] but also facilitate
the temporal locality of the shared resource usage. From our
simulation results, SPECWANDS only introduces 1% and 5%
performance overhead on realistic programs and SPEC 2017
benchmarks, respectively, which are much lower than those in
STT [15] and SMT-COP [18], the representative work of the
other two defenses.

To summarize, this article makes the following
contributions.

1) We examine the deficiencies in existing defense
approaches against SCAs, such as SC and TDM, and
propose a novel mitigation scheme to reduce most delay
between operations within the group, while blocking
potential cover channels created in both interthread and
intrathread modes.

2) We present a hardened instruction scheduler practic-
ing above scheme, called SPECWANDS. It consists
of three priority-based scheduling policies for differ-
ent contention situations to divide the instructions into
groups and ensure their security. Moreover, we analyze
the performance impact of each policy based on the
distribution of different contention situations.

3) We formally analyze the security of SPECWANDS, and
evaluate its performance overhead and power consump-
tion via detailed simulations. Compared with the other
two state-of-the-art defenses [15], [18], SPECWANDS

has promising advantages on some realistic programs
and SPEC 2017 benchmarks.

II. BACKGROUND AND RELATED WORK

A. Modern CPU Pipeline and SMT

Fig. 1 shows the microarchitecture of a typical high-
performance CPU, featuring branch speculation, out-of-
order scheduler and various techniques to optimize the
instruction-level parallelism (ILP). One such technique is
SMT, which allows for multiple hardware-supported threads
(HTs) to run on the pipeline concurrently, sharing criti-
cal resources such as L1-cache/TLBs, execution units (EUs)
and issuing ports. This approach improves the pipeline
throughput by hiding memory latency and maximizing
resource utilization. Previous studies [24] have shown that a
2-context SMT processor can improve performance by up
to 30% with some modest hardware cost. As a result,
SMT has been widely deployed in PCs and warehouse
servers.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4479

Fig. 1. Microarchitecture of a typical high-performance CPU that supports
speculative, out-of-order execution with a 2-context SMT.

B. Side-Channel Attacks on SMT Processors

While resources sharing can bring performance benefits, it
also exposes the SMT processors to potential side-channel
attacks. For the shared storage components, such as L1-
caches/TLBs, the interference among sharing HTs can cause a
subsequent access to be a hit or a miss. An attacker can exploit
this side effect by measuring the difference in its access time,
and infer some private information such as the encryption key
or keyboard strokes through the access traces [25]. Because
the placement and the measurement of the data layout in the
side channel can be done asynchronously, such channels are
called persistent channels. For shared computational compo-
nents, such as issuing ports [3] and EUs [1], [2], the contention
among threads can prolong the execution time of each HT,
which can also be perceived by the attacker to reason about
the private information related to the execution flow. Such side
channels are referred to as volatile channels.

C. Transient Execution Attacks and Covert Channels

Side-channel attacks have not attracted attention of proces-
sor designers until the emergence of TEAs. The core logic
of a TEA has three main steps: 1) Accessor; 2) Sender;
and 3) Receiver [4], [26]. In the accessor step, the attacker
illegally accesses the secret data through a staged specula-
tive execution. There are two ways the attacker can set up
the speculative attacks. In Spectre-type attacks, the attacker
exploits hardware branch predictors on control flow trans-
fer or memory disambiguation to bypass intended software
defense codes, such as bound checking [13], data cleaning
[8] or stack pivoting [9]. While in Meltdown-type attacks,
the attacker exploits the bugs of access permission protec-
tion to break hardware isolation between domains, such as
User_Space and Kernel_Space [], GuestVM and Hypervisor,
or SGX_Enclave and Untrusted_Software_Stack [5], [12].

The attacker can then use the sender step and the receiver
step to transmit the illegally accessed data through a covert
channel. A covert channel works very similarly to that of
a side channel. The only difference is that the sender and
the receiver in a covert channel are both manipulated by the
attacker. While in a side channel, the victim process is the
sender and the receiver are controlled by the attacker. In this

Fig. 2. PoC of an interthread SCA that exploits Spectre-V1 vulnerability.
The “index” can be steered by an attacker, and the “secret” is the target to
be leaked. The highlighted code can occupy an integer division unit and its
corresponding issuing port.

article, we use the term SCAs to describe the TEAs that are
based on resource contention, i.e. the attacks that use volatile
covert channels. Furthermore, we classify the existing SCAs
into two categories.

Interthread SCAs: Fig. 2 shows a PoC code of the Spectre-
V1 attack that exploits the resource contention on the issuing
port and the EU on an SMT processor. In this attack, HTTrojan
and HTSpy are both controlled by the attacker, with HTTrojan
acting as both the accessor and the sender, and HTSpy act-
ing as the receiver. First, HTTrojan bypasses the bound check
by manipulating the branch predictor at line 2, and reads the
secret by out-of-bounds access at line 4 during the speculative
execution. Then, HTTrojan controls the execution of the sub-
sequent division instructions according to the value of secret.
Assume the secret has only one bit. If it is 1, the division
will be executed. Meanwhile, HTSpy will also perform divi-
sion operations and measuring the time. If the time is shorter,
it can infer that no contention has occurred and the secret is 0;
otherwise, the secret is 1.

Intrathread SCAs: The above interthread SCAs can be
extended and carried out in the same HT, i.e., an intrathread
SCA. Some researchers have shown that, on a superscalar pro-
cessor, multiple independent instructions in the same schedul-
ing window can compete for the resources and thus can be
used to form a covert channel [21], [22]. As Fig. 3 shows,
the attacker combines the three steps in the same HT, and
delays the receiver step (via line 2) to make it executed simul-
taneously with the sender step. This attack is also known as
SpecRewind Attack [21].

D. Existing Mitigations

In most cases, mitigations for the attacks via persistent chan-
nels have been well established. They include domain parti-
tioning [27], [28], index/replacement randomization [29], [30],
and footprint-based detection [31], [32]. In particular, for
TEAs through persistent covert channels, schemes that use
Invisible Speculation [33], [34], [35], [36] extends the squash-
ing mechanism in the pipeline to cleanup and rollback the side
effects in the cache memory for the mis-predicted speculative
execution with modest performance and hardware overhead.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Fig. 3. PoC of an intrathread SCA, also called SpecRewind Attack, which
also exploits Spectre-V1 vulnerability and leverages the intrathread contention
as covert channel.

However, these methods cannot be generalized and applied
to volatile channels. Currently, the only secure solution is
to disable SMT for security-sensitive HTs [37], or schedul-
ing mutually untrusted threads on different physical cores
[38], [39]. However, this approach only works against tra-
ditional side-channel attacks when the protected target, such
as the thread executing a cryptographic computation or code
inside a secure enclave, can be identified by the program-
mer before running. But for SCAs, any thread with vulnerable
speculative code can be exploited by an attacker. It is hard to
distinguish an HTTrojan from an HTSpy as they are often from
the same user group and supposed to be trustworthy.

Another solution is to use TDM scheme on the shared
resources [18]. It allocates time slices for each HT to avoid
resource contention. However, this approach violates the orig-
inal intent of SMT to share unused resources when available.
It can incur significant performance overhead due to its rigid-
ity in resource sharing (more than 12% in our evaluation).
Although, some approaches try to adaptively allocate time
slices to improve resource utilization [19], the adaptive mea-
sure can inevitably be used to become another potential covert
channel. Other schemes [20], [40] adopt asymmetric allocation
strategies for threads with different trust levels to ensure that
highly trusted threads can obtain more time slices. However,
the trust level needs to be specified by the programmer through
some annotations. So, it comes back to the earlier question of
“which threads can we trust?”.

Another type of defenses against SCAs is SC
[15], [16], [17]. Instead of blocking covert channels, it
disallows data or other potential microarchitectural side
effects from propagating to the downstream instructions by
stalling/blocking some dependent instructions during the
speculative execution until the execution has reached some
safe points. The advantage of such schemes is that they
can block both persistent and volatile covert channels of
TEAs comprehensively. But, due to the use of stalling and
blocking of the dependent instructions, they often incur a
significant performance overhead (up to 15% according to
our evaluation).

TABLE I
VULNERABILITY AND ACCESS CAPABILITY OF EXISTING SCAS

. AC: WHETHER IT CAN ACCESS THE DATA CROSS HARDWARE

PROTECTION DOMAINS

III. THREAT MODEL

Table I lists the vulnerabilities exploited by existing SCAs,
as well as the capabilities for their illegal accesses. We assume
a powerful attacker can launch any SCA listed in Table I
within or across domains. For example, the attacker can inject
an attack code through malicious Javascript scripts, or mali-
cious browser plug-ins. The code can exploit Spectre-PHT
vulnerability [13] to bypass the bound check of browser’s
sandbox and access some private keys and cookies. Or, the
attacker can exploit Meltdown vulnerability [12] by crossing
the hardware domain of the kernel and accessing some criti-
cal data structures. The attacker can then transmit the stolen
secrets through a covert channel based on resource contention
as shown in Figs. 2 and 3. Furthermore, the attacker can launch
a malicious virtual machine (VM) in the cloud and exploit
Foreshadow vulnerability [5] to access the data in other vic-
tim VMs residing on the same physical core. The malicious
VM can also transfer the stolen data through the fabricated
contention covert channel.

Out-of-Scope: We do not consider TEAs through persis-
tent covert channels, e.g., cache or TLB. As explained in
Section II-D, existing defenses are effective and efficient to
cover these attacks, and they are orthogonal to our scheme. We
also exclude nontransient side-channel attacks because of their
limited threat. Some effective defenses against those attacks
have been introduced in Section II-D.

IV. DESIGN OF SPECWANDS

A. Overview

We first revisit the handicaps of two existing defense
approaches, i.e., TDM and SC. For TDM, the strict parti-
tioning of time slices is too rigid for most workloads that
may have unbalanced resource requirements. For example, if
we have two active HTs in the system, with one being more
computation-intensive and the other more memory-intensive.
Using TDM, almost half of the computation and memory
resources may be wasted. For SC, when branch instructions
are issued frequently and the average branch resolution time
is long (nearly 20 cycles for SPEC benchmarks according to
our evaluation), the aggregated issuing delay will incur a sig-
nificant performance overhead. Fig. 4(a) shows the timelines
of two HTs that execute the code snippet shown in the box.
In each iteration, the division operation within the loop body
need to be delayed until the guarding branch is resolved, i.e.,

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4481

Fig. 4. Timelines of loop iterations in the code snippet shown in the
figure under Speculative Compression (SC), Grouping (i.e., the policy of
SPECWANDS), and native FCFS policies, respectively. (a) Loop iteration under
SC policy. (b) Loop iteration under grouping policy. (c) Loop iteration under
FCFS policy.

until the operation becomes nonspeculative. If the loop iterates
more than eight times, the overhead can reach 8× as long for
SC policy.

Our Insight: The above observation leads us to conclude
that if the scheduler can batch multiple speculative operations
from the same HT into a group and allow them to exclusively
occupy the resource for a short period of time (as most of
the speculative execution windows are relatively short), then
it can avoid the delay on each group member to improve
performance. As shown in Fig. 4, compared to the timeline
under SC policy in (a), the timeline of grouping-based policy
in (b) greatly reduces the number of delays and is close to the
timeline under the native FCFS policy in (c).

To achieve the assumption, we propose a priority-based
scheduler named SPECWANDS. It can efficiently slice and
batch the instructions into groups by determining their pri-
ority based on their speculative status and the history of
resource occupation. SPECWANDS incorporates three schedul-
ing policies: 1) nonspeculative operations have higher priority
over speculative operations (denoted as NOP); 2) last-owner-
thread’s operations have higher priority among speculative
operations from different HTs (denoted as LOP); and 3) earlier
operations have higher priority within the same HT (denoted
as EOP). As shown in Fig. 4(b), the NOP policy enforce each
group header operation to wait until it becomes nonspecula-
tive; LOP policy allows inner speculative operations within a
group to inherit resource until another group header opera-
tion (from the other HT) become nonspeculative; EOP policy
inhibits the disorder of inner speculative operations within a
group.1

1It should be noted that the grouping of SPECWANDS is solely determined
by the scheduler, without involving compiler assistance as is the case with
Intel Itanium processors.

Fig. 5. Workflow of the NOP policy and its defense mechanism in an
interthread scenario. It is also the same in an intrathread scenario. (a) NOP
workflow when operations are ready at the same time. (b) NOP workflow
when the nonspeculative operation is ready later.

The security concept behind them is the principle of SNI
[23], i.e., the observable states of a speculative execution
should be indistinguishable from those when the same code
sequence is executed nonspeculatively. Focusing on resource
contention-based covert channels, the SNI principle means that
the machine states as the result of the resource allocation poli-
cies should be independent of whether the code sequence is
executed speculatively or not. We will detail the workflow,
defense mechanism and performance impact of these policies
in the following sections.

B. NOP: Nonspeculative Operations Have Higher Priority

In SPECWANDS, each nonspeculative operation is treated
as the header of a group. When a group header operation
compete for resources together with another group inner spec-
ulative operations, it should be assigned higher and preemptive
priority.

This policy ensures that nonspeculative operations from a
potential receiver can access the shared resource immediately,
and will not observe the interference caused by speculative
operations staged by a potential sender. Fig. 5 shows such an
example with two instructions from two HTs, one as a sender
and the other as a receiver, competing for an issuing port. The
policy takes effect in the following two scenarios.

If the port is free when the contention occurs, the nonspecu-
lative instruction will access the port immediately. As Fig. 5(a)
shows, instruction IX from HT0 and instruction IY from HT1
compete for the port at t0. The status of IX is speculative,
and IY is not. According to the NOP policy, IY can occupy
the port immediately, and IX needs to wait until the port is
free. In this scenario, if HT0 acts as the sender and HT1 as
the receiver, owing to the NOP policy on HT1, no information
can be transmitted.

If the port is currently occupied by a speculative instruction,
the nonspeculative instruction can preempt it immediately. As

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Fig. 6. Workflow of the LOP policy and its defense mechanism. (a) LOP
workflow when last nonspeculative owner is HTreceiver. (b) LOP workflow
when last nonspeculative owner is HTsender.

shown in Fig. 5(b), speculative instruction IX from HT0 (acting
as the sender) is occupying the port exclusively at t0; At t1,
instruction IY (acting as the receiver) is ready and becomes
nonspeculative. According to the NOP policy, it can preempt
the port, and IX needs to wait for being reissued until the
completion of IY at t2. In this case, the sender cannot interfere
with the receiver, thus no information can be transmitted either.

C. LOP: Last-Owner-Thread’s Operations Have Higher
Priority

If the group header operation has occupy a resource, the rest
of inner speculative operations within the group can inherit
the ownership without waiting for becoming nonspeculative,
until it is preempted by another group header operation. In
other words, when multiple speculative operations from dif-
ferent HTs compete for a resource, SPECWANDS will give a
higher priority to the competitor whose HT is the most recent
nonspeculative owner of the resource.

Note that this policy is nonpreemptive, which means the
owner HT can exclusively occupy the resource during the cur-
rent period, regardless of whether it needs it or not, until the
other HT preempts the resource, i.e., switches the ownership,
via the NOP policy.

Combined with the NOP policy, this policy guarantees that
the resource allocation across multiple HTs is independent of
any speculative operation. It prevents the accessor of an SCA
from modulating the resource to setup a covert channel. Fig. 6
shows the workflow of the LOP policy in more details and
discuss how it can defeat interthread SCAs.

In Fig. 6(a), we assume HT1 is a more recent nonspeculative
owner of the port. At t2, the instruction IX of HT0 is ready,
but according to the LOP policy, it still cannot occupy the port
even though the port is free. At t3, when the instruction IY of
HT1 is ready, it can be issued immediately. If HT0 acts as the

Fig. 7. Workflow of the EOP policy and its defense mechanism. (a) EOP
workflow when operations are ready at the same time. (b) EOP workflow
when the earlier operation is ready later.

sender and HT1 as the receiver, nothing can be transmitted
because HT1 observes no delay.

On the contrary, in Fig. 6(b), HT0 is the most recent non-
speculative owner and its subsequent instruction IX (acting as
the sender) can occupy the port immediately at t2. Thus, the
instructions IY from HT1 (acting as the receiver) needs to wait
until it becomes nonspeculative at t4. In this case, although a
delay occurs, the receiver cannot attribute it to the contention
created by the sender, because no matter IX exists or not, HT1
still needs to wait as it is not the most recent nonspeculative
owner. The delay only depends on the previous nonspecula-
tive instructions of HT0, which cannot be dependent to the
speculative accessor of any SCA.

D. EOP: Earlier Operations Have Higher Priority

The above policies does not aim at intrathread SCAs, i.e.,
the contention of speculative operations within the group,
due to multi-issuing and out-of-order execution. Therefore,
we need more information to identify potential receivers and
senders and keep a receiver from observing the interference
created by a sender within the same HT.

With a closer look at the PoC in Fig. 3, we can notice
that the receiver must be earlier than the sender in the pro-
gram order. Otherwise, the completion time of the receiver will
depend on the resolution time of the branch instruction at line-
8, instead of its own execution time. That is why intrathread
SCAs are called SpecRewind Attacks [21]. Based on this obser-
vation, SPECWANDS assigns a higher and preemptive priority
to the earlier speculative operations than other speculative
operations within the same HT.

Fig. 7 shows the EOP workflow using an example with two
speculative instructions from HT0. We assume the earlier one
(IX) serves as the receiver and the later one (IY) as the sender.
There is no data dependence between them, and the issuing
of receiver is delayed because its operands are not available
until it encounters the sender within the scheduling window.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4483

Fig. 8. Distribution of various contention scenarios on a “vanilla” SMT
processor. S1: one competitor is nonspeculative and the other is speculative;
S2: both competitors from different HTs are speculative, and the competitor
from the most recent owner HT is the first to occupy the resource; S3: same as
S2, except the competitor is not from the most recent owner HT that occupies
the source first; and S4: both competitors are speculative and from the same
HT.

As shown in Fig. 7(a), if the port is idle at t0 and two instruc-
tions are both ready to be issued, the earlier receiver will be
scheduled first. However, as shown in Fig. 7(b), if the sender
is issued at t0 and the receiver becomes ready at t1, it will
immediately preempt the issuing port.

E. Estimation on Performance Impact

We collect some statistics on various contention sce-
narios on an insecure native SMT system to estimate the
performance impact of those three policies. The configuration
and the methodology of the experiments are the same as those
described in Section VII-A, and the results are presented in
Fig. 8.

For NOP: The NOP policy can affect the performance in
two ways. It can positively eliminate the contention caused
by the wrong-path speculation. Also, it can negatively pre-
empt the speculative execution on the correct path by some
nonspeculative operations, and force some of its operations to
be re-executed. However, as shown in Fig. 14, almost 50%
of instructions are not issued (3%) or issued without con-
tention (47%). For these two situations, SPECWANDS will not
incur any overhead. Only about 1% of the issued instructions
encounter a contention with one nonspeculative and the other
speculative competitor. This situation can lead to preemption
under the NOP policy. Thus, we believe that the NOP policy
will incur only modest overhead.

For LOP: The LOP policy is designed not only to break
the speculative dependence required by all SCAs but also to
utilize the temporal locality of resource occupancy to mini-
mize the performance impact. As shown in Fig. 8, scenarios
S2 and S3, i.e., both competitors are speculative and from dif-
ferent HTs, constitute 46% of total cases. Among them, 42%
are in scenario S2, i.e., the first arriving request are from the
last owner HT; while only 4% cases are in scenario S3, i.e.,
the first arriving request is not from the last owner HT. The
results show that the efficiency of the LOP policy used in
SPECWANDS approximates to the FCFS policy used in the
insecure native SMT processor.

For EOP: From Fig. 8, we can see that only about 1% of the
cases are in scenario S4, i.e., both competitors are speculative
and from the same HT, which may violate the EOP policy and
cause preemption and re-execution with a negative impact on

Fig. 9. Framework of SPECWANDS. The shaded boxes are those introduced
by SPECWANDS.

performance. This result indicates that the EOP policy will
also have a minimal impact on the overall performance.

Overall, the performance impact of all three scheduling
policies are quite small. And subsequent performance eval-
uation on a simulated system, as described in Sections VII-C
and VII-D, also confirm our assertions.

V. KEY IMPLEMENTATION ASPECTS

Fig. 9 presents the framework of SPECWANDS on a typical
SMT microarchitecture. Before introducing its implementa-
tion, we need to clarify the definition on when a speculative
instruction becomes “nonspeculative.” It can determine the
defense capability and the impact on performance. Similar
to earlier work, such as [15], [33], and [34], SPECWANDS

has two operating modes that correspond to two variants of
definition on when an instruction has become nonspeculative.

1) SPECWANDS-Spectre: This operating mode only
defends against SCAs that exploit vulnerabilities
from branches, e.g., Spectre-PHT/BTB/RSB. Here, a
speculative instruction is considered to have become
nonspeculative when all its previous branch instructions
have been resolved and predicted correctly. This mode
has a small performance overhead because the specula-
tive instructions from the correctly predicted path can
become nonspeculative quickly and free to compete for
resources as the instructions in the unsecured native
processor. But its defense scope is more restrictive, and
should be deployed with other mitigation schemes to
form a more comprehensive defense system.

2) SPECWANDS-All: This variant can defend against all
SCAs that include existing SCAs and any future SCA.
Here, an instruction is considered to be nonspecula-
tive only when it reaches the head of ROB without
triggering an exception. This variant has a relatively
higher performance overhead due to longer waiting time
for becoming nonspeculative. But it has a much wider
defense scope so that it does not rely on any other
mitigation schemes.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4484 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Based on the above definition, we can also give two vari-
ants of the definition on the instruction ordering in the EOP
policy. In the SPECWANDS-ALL mode, we adhere to the
conventional definition of instruction ordering, i.e., an “ear-
lier” instruction means an “older” instruction in the original
program order. In the SPECWANDS-Spectre mode, we define
instruction ordering between two instructions using their rel-
ative speculative degree, which means the number of control
flow predictions (branches) exercised by the instruction. From
the view of dynamic control flow graph, the instruction in the
deeper basic block (dominated by more branches) has larger
speculative degree. Taking the PoC in Fig. 3 as an exam-
ple, the division instruction at line-13 has 2-more speculative
degree than the division instruction at line-4, since before line-
13 enters the pipeline, the speculation of previous branches
at line-8 and line-11 must have been exercised. This variant
further reduces the performance overhead of the EOP in the
SPECWANDS-Spectre mode, because instructions within the
same basic block have the same speculative degree, and thus
no preemption and re-execution occurs.

A. Speculative Status Checker

Speculative status checker (SSC) plays the role to check
whether an instruction is speculative or not, and compute
its speculative degree if it is. Such information is needed
in the NOP and EOP policies. SSC is associated with ROB,
which provides a global program ordering and execution status
of each HT. When instructions are inserted/removed in/from
ROB, or ROB receives updated speculation information, SSC
will be activated to check and update the speculation status
of each ROB entry, and then notify the instruction scheduler.
The speculation status is recorded in the following two fields
in each ROB entry.

1) Spec_Flag: 1-bit tag indicating whether the instruction
is speculative or not.

2) Spec_Degree: 7-bit tag specifying the speculative degree
of the instruction.

In a simple implementation, SSC can scan from the header
of ROB, setting the Spec_Flag of each instruction to nonspec-
ulative and the Spec_Degree to zero, until it encounters an
unresolved branch. The Spec_Flag of the subsequent instruc-
tions are all set to speculative, and the Spec_Degree will be
incremented with the number of scanned unsolved branches.
However, such an implementation may incur significant over-
head and power consumption when ROB is large as in modern
CPUs (more than 200). In SPECWANDS, we limit the width of
each scan and adopt a progressive scanning strategy. In each
round, SSC only scans a fixed number of instructions (usually
the same as the issue width), and records the results in three
intrinsic registers for next scan.

1) Last_Pos: 8-bit field pointing to the ending entry of this
scan.

2) Last_NS: 8-bit field pointing to the entry of the last
nonspeculative instruction in this scan.

3) Spec_Degree_Counter: 8-bit field accumulating the
number of unresolved branches encountered.

Fig. 10. Workflow of the instruction issuing logic in the SPECWANDS

scheduler.

When a ROB squash occurs due to a mispeculation,
SSC can quickly reset the Last_Pos to the position of the
youngest unsquashed instruction, and recover the Last_NS and
Spec_Degree_Counter from the Spec_Flag and Spec_Degree
fields of that instruction.

B. Enhanced SMT Instruction Scheduler

Each reservation station (RS) entry needs to be tagged with
two fields: Spec_Flag and Spec_Degree, which will be updated
by SSC and used by the SMT instruction scheduler. The sched-
uler also needs to add a Victim_Slot for each issuing port to
temporarily store each preempted instruction. When an instruc-
tion is issued, its opcode and operands are fed into the EU and
also stored in the Victim_Slot. Once the scheduler decides to
preempt the instruction, the port asserts the kill signal to the
EU, which clears the internal state of the unpipelined unit
and allows for accepting new operands in the next cycle. The
kill signal simultaneously activates the port’s Victim_Slot to
reinsert the preempted instruction into the RS. In addition,
each port needs an intrinsic control register to record the
information for scheduling. The register includes the following
four fields.

1) Free_Flag: 1-bit field indicating whether the port is free
or not. Only when it is cleared (i.e., free), the following
four fields can be valid.

2) Owner_TID: 1-bit field indicating which HT is occupy-
ing the port.

3) Owner_Spec_Flag: 1-bit field recording whether the
occupying instruction is speculative.

4) Owner_Spec_Degree: 7-bit field recording the specula-
tive degree of the occupying instruction.

Fig. 10 shows the workflow of the enhanced SMT instruc-
tion scheduler. Step-1: Select a ready instruction from RS
as the candidate. Step-2: Determine whether the candidate’s
thread ID (TID) matches the port’s Owner_TID. If they match,
go to step-3; otherwise, go to step-7. Step-3: Check the port’s
Free_Flag to determine whether it is free or not. If it is free,
go to step-7; otherwise, go to step-4. Step-4: If the candidate’s
TID matches the port’s Owner_TID, but the port is not free, it
means the port is being occupied by another instruction from

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4485

the same HT. In this case, according to the EOP policy, we can
just compare their speculative degrees. If the candidate wins,
go to step-6 for preemption; otherwise, go to step-8. Step-5: If
the candidate does not match the port’s Owner_TID, it means
the port is occupied by another HT. According to the NOP
policy, we need to check whether the candidate is nonspec-
ulative and the owner instruction is speculative or not. If so,
go to step-6; otherwise, go to step-8. Step-6: According to the
NOP or EOP policy, preempt the occupying instruction and
put it in the port’s Victim_Slot. Step-7: Issue the candidate,
update the port’s control register. Step-8: When this step is
reached, it means issuing of this candidate has failed. So, just
skip it and schedule the next instruction.

VI. SECURITY ANALYSIS

A rigorous proof of the SNI principle involves formally
modeling the workflow of the entire scheduler and enumer-
ating all possible instruction sequences. This task demands
substantial manual effort even with the help of advanced auto-
mated verification tools. As a result, we propose a workaround
instead by aiming the proof target from an attacker’s perspec-
tive. The core proof of the interthread SCA mitigation on
a CPU with 2-context SMT has been achieved through the
Owicki-Gries method [43], which is widely used to verify the
correctness of concurrent systems. Due to page limit, we only
provide a summary of the proof here. More details can be
found in [44].

We abstract the attack process to two HTs: HTsender and
HTreceiver. They continuously call the function acquire() to
obtain a shared issue port. The function acquire() follows
the NOP and LOP policies, determining acquisition success
according to the operation’s speculative status (op.status), the
port’s last nonspeculative owner (port.owner) and the port’s
occupying speculative status (port.status). If acquire() returns
true the HT must call release(), which evaluates whether
the port is preempted by others and resets (port.status). Both
acquire()/release() are atomic, but the interval between them
is not. If either acquire() or release() fails, the perceived delay
of HTreceiver’s operation (opreceiver.delay) will exceed zero.

Our target is to prove that the system satisfies the invariant
property outlined in (1), where I and T , respectively, denote
the value of the secret (1 or 0) and the delay value (greater than
0 or 0). This property realizes the SNI principle, ensuring that
any information attackers glean from the system, specifically
the delay time of HTreceiver’s operation, remains independent
of the secret data (assuming it has only 1-bit). Notably, the
proof must be based on a critical assumption, which is all
HTsender’s operations dependent on the secret are speculative;
otherwise, the attack is considered beyond the scope of the
transient-execution attack

M |= �(I(secret) ⊥⊥ T (opreceiver.delay)). (1)

The proof process unfolds in the following bottom-up steps.
First, we conclude several primitive invariant properties of
acquire()/release() as (2) shows. For acquire(), if port.owner
equals op.tid or port.status is nonspeculative, port.owner will
never be changed, and vice versa. As for release(), port.status

TABLE II
PARAMETERS USED IN THE SIMULATED MICRO-ARCHITECTURE FOR THE

BASELINE DATA. THE LABEL SHOWN AFTER EACH COMPONENT

INDICATES ITS SHARING STRATEGY AMONG MULTIPLE HTS, WHERE

“S” MEANS TOTAL SHARING, “P” MEANS FAIR PARTITION, AND “M”
MEANS MULTIPLEXING WITH YIELD SCHEME

will always be reset; and if port.owner equals op.tid, it will
return true, and vice versa

Pacq � �(((port.owner = op.tid) ∨ port.status))

⇔ ⊗port.owner

Prel � �(((port.owner = op.tid) ⇔ res))

∧ ¬port.status. (2)

Next, we derive the compound invariant properties of
HTsender and HTreceiver. As depicted in (3), HTsender can never
alter port.owner, and port.status is always speculative. For
HTreceiver, whether opreceiver.delay is greater than 0 depends
on the conjunction of acquire()’s and release()’s return value

Psender � �(⊗port.owner ∧ ¬port.status)

Preciver � �
((

resacq ∧ resrel
) ⇔ ¬T (opreceiver.delay)

)
. (3)

Finally, we reason about the critical invariant property
concerning the isolation between HTsender and HTreceiver, sig-
nifying that the property is always satisfied regardless of their
interleaving. As shown in (4), I(secret) remains independent
of port.owner and opreceiver.status. By unifying all the afore-
mentioned properties, we can derive the ultimate target, i.e.,
the independence between I(secret) and opreceiver.delay

Pisolation � �((I(secret) ⊥⊥ port.owner)∧
(I(secret) ⊥⊥ opreceiver.status)). (4)

VII. EVALUATION

A. Experiment Setup and Methodology

We simulated a prototype of SPECWANDS on the
Gem5 simulator [45] (version fe187de9bd) with the O3 CPU
model. The parameter values of the main components are
shown in Table II. We add issuing ports and configure the
grouping of EUs based on the Intel Skylake microarchitec-
ture. We first run SPEC CPU 2017 (rate) benchmarks with
the ref input data. To cover various scheduling scenarios, we
follow the methodology of previous works [18] by selecting
the benchmark pair according to their types (e.g., integer or
floating-point) and program characteristics (e.g., number of
branches and L2 Cache misses) as Table III shows. To evaluate
the impact on more realistic scenarios, we also run a popu-
lar embedding Javascript engine Duktape [46] (version 2.6)

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4486 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

TABLE III
SPEC 2017 BENCHMARKS ARE DIVIDED INTO FOUR CATEGORIES

BASED ON THE NUMBER OF BRANCH INSTRUCTIONS AND L2 CACHE

MISS RATE. “I” STANDS FOR INTEGER PROGRAMS AND “F” STANDS FOR

FLOATING-POINT PROGRAMS. THE CATEGORIZATION REFERS TO

PREVIOUS RESEARCH [49]

Fig. 11. Latency measured by the receiver of inter-/intra-thread SCA running
on the native/SPECWANDS-hardened CPU. To improve legibility, we super-
impose the results of interthread PoC above those of intrathread PoC, and
shift them upward by a constant value.

with Sunspider [47] benchmarks as the input data. SunSpider
includes the following eight categories of applications: 3-D
modeling, data access, bit manipulation, encryption, complex
control flow, mathematical libraries, regular expression pro-
cessing, and data encoding. Like other prior work [20], we
select one program from each category with the longest execu-
tion time, and adopt the tournament pairing scheme to evaluate
the largest overhead for each program on different scheduling
scenarios.

B. Effectiveness Evaluation

First, we construct two PoCs of inter-/intra-thread SCA
exploiting Spectre-PHT as shown in Figs. 2 and 3. To
maximize the window for contention, we choose the integer
division unit as the covert channel, which takes the longest
time (12 cycles) to complete the computation. In PoCs, each
iteration can transmit 1 bit value, repeated 100 times to reduce
statistical error. For the interthread PoC, considering that
GEM5 does not support full-system simulation in the SMT
mode, and the memory space of each HT is completely iso-
lated, it is quite challenging to synchronize the HTsender and
HTreceiver in each iteration. Thus, we add an instruction in the
ISA dedicated to synchronize HTs on SMT, whose function
is similar to pthread_barrier_wait(). The simulation results
of the SPECWANDS-hardened system compared to the native
system are presented in Fig. 11. It shows that the attacker can
accurately leak each bit in the native system, while unable to
do so in the SPECWANDS-hardened system.

Second, we test SPECWANDS against two open-sourced
attacks in the wild: one is SMoTher [14], an interthread
SCA that exploits Spectre-BTB vulnerability [48]; the other
is SpectreRewind [21], an intrathread SCA that exploits
Meltdown vulnerability [12]. Because Meltdown vulnerabil-
ity cannot be simulated on Gem5 microarchitecture that

Fig. 12. Distribution of latency measured by the receiver code. Similar
as Fig. 11, we shift the result of SMoTher attack to allow both results to
be presented in a single figure. To obtain a more accurate error rate, we
modify the default threshold of SMoTher and adopt the thresholding sampling
algorithm of SpectreRewind. (a) Distribution of timing results (cycles) on
native CPU. (b) Distribution of timing results (cycles) on SpecWands-hardened
CPU.

requires full system simulation, we rewrite the process
of SpectreRewind to exploit Spectre-STL vulnerability [8].
Fig. 12 shows the distribution of the latency and the error
rates for both attacks. We can see that, on the native CPU, the
attacker has a lower error rate to distinguish whether the trans-
mitted bit is 1 or 0, while on the SPECWANDS-hardened CPU,
the error rate is already higher than 50%, which is equivalent
to random guessing.

C. Performance Evaluation

We compare the performance of SPECWANDS with two
other schemes, where SMT-COP [18] represents TDM scheme
and STT [15] represents the speculative compression scheme.
Since SMT-COP is not open-sourced, we reimplement its
scheme on Gem5. To give a fair comparison, for SMT-COP, we
do not implement other adaptive strategies that may sacrifice
its security; For STT, we lift the protection for the persistent-
channel components, such as cache/TLB and PHT/BTB/RSB.
Similar to SPECWANDS, STT also has two defense modes, i.e.,
Spectre-Mode and All-Mode (called Futristic-Mode in their
paper).

Fig. 13(a) and (b) shows the performance overhead of the
three defenses for Duktape Javascript engine and SPEC CPU
2017 (rate), respectively. From the figure, we can see that
the overall performance overhead of SPECWANDS-Spectre/-
All are 0.70%/3.12% and 5.83%/10.56%, which are much
lower than 24.47%/51.91% and 14.04%/67.47% of STT, and
also much lower than 5.93% and 17.29% of SMT-COP. For
each benchmark pair, SPECWANDS significantly outperforms
STT in both defense modes. And this advantage also shows
in comparison between SPECWANDS and SMT-COP, except
for a few cases such as povray-calculix and x264_r-leela_r
in SPEC 2017. To facilitate more detail analysis, we record
other statistics such as the latency of operand-ready instruc-
tions waiting for issuing, the busy rate of issuing port, etc., as
shown in Table IV.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4487

Fig. 13. Performance overhead of SMT-COP, STT-Spectre, STT-All, SPECWANDS-Spectre, and SPECWANDS-All on Duktape Javascript engine and SPEC
CPU 2017 (rate) benchmarks. The bars taller than 80% are truncated, whose maximum values are marked in red. (a) Performance Overhead on DukTape
Javascript Engine with Sunspider Benchmarks. (b) Performance Overhead on SPEC CPU 2017 (rate).

TABLE IV
MEAN STATISTIC OF RUNNING DUKTAPE/SPEC ON EACH SYSTEM. “1”:

SMT-COP, “2”: STT-SPECTRE, “3”: STT-ALL, “4”:
SPECWANDS-SPECTRE, “5”: SPECWANDS-ALL, “-SP”: SPECTRE-MODE.

“LW”: LATENCY OF OPERAND-READY INSTRUCTION WAITING FOR

ISSUING; “LT”: LATENCY OF ISSUE-TRYING, WHICH EQUALS THE

LATENCY BETWEEN THE MOMENT OF INSTRUCTION BEING ISSUED

FIRST TIME AND THE MOMENT BEING ISSUED SUCCESSFULLY (LAST

TIME); “LX”: LATENCY OF INSTRUCTION EXECUTION. “BR”: BUSY

RATE OF ISSUING PORTS; “UR”: UTILIZATION RATE OF ISSUING WIDTH.
“FR”: FULL-EVENT OCCURRENCE RATE OF RS

Versus STT: The main overhead of STT comes from the
need to wait for the dependant instructions to become non-
speculative, which may cause the pipeline to stall. Table IV
indeed shows the system hardened by STT has a much
larger issuing waiting latency than the other two (almost
by 20–30 cycles). The trend is even more pronounced
when the program has a larger branch resolution time or a
dependency chain with higher L2 Cache miss, such as the
pairs containing control_flow_recursive, math_spectral_norm,

crypto_md5 in Duktape engine, and perlbench_r, mcf_r,
parest_r in SPEC 2017. But, once the instructions are
allowed to be issued in STT, HTs are free to compete for
the resources as in an unprotected system. So, its utiliza-
tion of issuing bandwidth is the most efficient among the
three.

Versus SMT-COP: The main overhead of SMT-COP is the
time waiting for an HT’s own time slice, which often leads to
longer issuing waiting latency and much lower issuing port uti-
lization (below 50%) as Table IV shows. For memory intensive
programs, such as bitops_3bit_bits_in_byt, exp_dna_string in
Duktape engine, and x264_r, wrf_r, and exchange2_r in SPEC
2017, such low utilization rates become more serious. The
advantage of SMT-COP is its simplicity to implement, but its
scalability is the worst among three schemes. The length of
the time slice depends on the longest completion time of any
unpipelined EU, and the waiting time is proportionate to the
number of HTs supported on the CPU.

Additionally, a common factor that contributes to the
performance overhead of STT and SMT-COP is their long
issue delay, which frequently stalls the pipeline and drags
down the overall performance. In contrast, the main overhead
of SPECWANDS is the latency induced by the LOP policy,
as well as the preemption/re-execution overhead induced by

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4488 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Fig. 14. Performance overhead of SPECWANDS using different combinations
of policies on Duktape engine and SPEC 2017.

the NOP and EOP policies. Nevertheless, its overall over-
head remains relatively low. The highest overheads observed in
SPECWANDS-Spectre/-All are 18.63%/57.71%, respectively,
which occur in the exchange2_r-x264_r and x264_r-leela_r
workloads of SPEC 2017. These overheads are still far below
the highest overheads observed in STT (37.81% and 124.90%)
and is comparable to the highest overhead in SMT-COP
(56.59%). Moreover, as illustrated in Fig. 13(b) for more
realistic applications, the largest overheads of SPECWANDS-
Spectre/-All in different scenarios are approximately 1%/7%,
with the worst case scenarios not exceeding 3%/15%. These
values are far more acceptable to developers compared to the
extreme cases observed in the other two defenses.

D. More Detailed Analysis on Performance Overhead

First, we analyze the impact of different scheduling policies
on the overall performance. Based on their defense scopes,
we separate the policies into two groups: 1) enabling NOP
and EOP policies only for intrathread SCAs and 2) enabling
NOP and LOP policies only for interthread SCAs. The results
are shown in Fig. 14. The performance overhead of the
NOP+EOP is around 0.1%–0.3%. This is because most of the
issuing port contention comes from speculative instructions.
Thus, the preemption caused by NOP occurs only very infre-
quently. And since the native scheduler tends to issue older
ones when it confronts multiple ready instructions within an
HT, the preemption caused by EOP also occurs infrequently.
In contrast, the overhead of the NOP+LOP is relatively high at
around 3%-8%, which basically constitutes most of the overall
overhead. It shows that, although we try to exploit the tempo-
ral locality of the issuing port using LOP, it still cannot satisfy
the bandwidth demand of all HTs.

Next, we analyze the benchmark pairs that have a high
performance overhead under the NOP+LOP policies. We sam-
ple the number of issuing ports occupied by each HT and
calculate the ratio of that number for HT0 and HT1 under
native FCFS policy (as baseline) and SPECWANDS, respec-
tively. The results are shown in Fig. 15. We find that, for those
program pairs that have a high overhead under LOP, one of
them must be a dominant program that has a higher occu-
pancy rate under the native policy, such as 3bit_bits_in_byte,

Fig. 15. Ratios of issue ports owned by two HTs (HT0/HT1). Under the
LOP policy, the number of issue ports owned by each HT is sampled per
10 000 cycles, and then their arithmetic average is calculated.

TABLE V
OVERHEAD OF DYNAMIC POWER CONSUMPTION RUNNING

DUKTAPE/SPEC ON EACH SYSTEM. BECAUSE THE RUNNING TIME AND

EXECUTED INSTRUCTIONS OF EACH BENCHMARKS PAIRS DIFFER UNDER

DIFFERENT SYSTEMS, WE CALCULATE THE AVERAGE POWER

CONSUMPTION PER NANOSECOND

exchange2_r, and x264_r. When using the LOP policy, the
nondominant HT can have a larger share of the issuing port,
which can slow down the dominant HT as a result. For this
situation, one workaround is to referring more nonspecula-
tive access history of each HT for resource allocation instead
of direct ownership inheriting. Such revised policy may give
more opportunities to the HT that exactly needs the resource
more eagerly. We will further evaluate more improvement
solutions in future works.

E. Power Consumption Evaluation

We applied McPAT [50] (version 1.3) to model the power
consumption of SMT-COP, STT, and SPECWANDS. The
results are shown in Table V. We only modify the sched-
uler instead of introducing new RAM components, thus the
incurred hardware cost and static power consumption (such
as gate leakage, subthreshold leakage) are negligible. Here,
we only measure dynamic power when running Duktape
engine and SPEC 2017. To ensure a more accurate measure-
ment, we patch the code of SSC and Enhanced Scheduler
in SPECWANDS, as well as the code of Data Flow Tracking
and Tainting/Untainting in STT, so that these actions can be
reflected in the statistics of relevant pipeline components, i.e.,
EUs, RS, and ROB.

As we can see from Table V, SPECWANDS has a slightly
higher power overhead on EUs compared to SMT-COP and
STT, which mainly comes from the preemption and the re-
execution required in the NOP and EOP policies. STT also
consumes more power than SPECWANDS on RS and ROB
accesses because both Taint and Untaint operations in STT
require frequent accesses to these two components.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: SPECWANDS: AN EFFICIENT PRIORITY-BASED SCHEDULER 4489

VIII. CONCLUSION

In this article, we propose a priority-based scheduler, called
SPECWANDS, to defend against TEAs that exploit inter-/intra-
thread contention on a system component as a covert channel.
SPECWANDS contains three scheduling policies: 1) NOP: it
allows nonspeculative operations to preempt speculative oper-
ations at any time; 2) LOP: it allocates the resource to the
speculative operations which belong to the thread occupying
the resource most recently; and 3) EOP: it gives the ear-
lier speculative operations in a thread higher and preemptive
priority over the later speculative operation within the same
thread. These three policies batch multiple continuous specu-
lative operations into a group, which can exclusively occupy
the resource for a certain period of time without any delay.
The performance evaluation shows that SPECWANDS has a
significant performance advantage over other state-of-the-art
approaches, such as speculative compression and TDM.

REFERENCES

[1] W.-M. Hu, “Lattice scheduling and covert channels,” in Proc. IEEE
Comput. Soc. Symp. Res. Security Privacy, 1992, pp. 52–61.

[2] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
Proc. IEEE Symp. Security Privacy, 2015, pp. 623–639.

[3] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri,
“Port contention for fun and profit,” in Proc. IEEE Symp. Security
Privacy (SP), 2019, pp. 870–887.

[4] C. Canella et al., “A systematic evaluation of transient execution
attacks and defenses,” in Proc. 28th USENIX Security Symp., 2019,
pp. 249–266.

[5] J. Van Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution,” in Proc. 27th USENIX
Security Symp., 2018, pp. 991–1008.

[6] S. Van Schaik et al., “RIDL: Rogue in-flight data load,” in Proc. IEEE
Symp. Security Privacy (SP), 2019, pp. 88–105.

[7] J. Van Bulck et al., “LVI: Hijacking transient execution through microar-
chitectural load value injection,” in Proc. IEEE Symp. Security Privacy
(SP), 2020, pp. 54–72.

[8] M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-leak forward-
ing: Leaking data on meltdown-resistant CPUs (updated and extended
version),” 2019, arXiv:1905.05725.

[9] A. Luţaş and D. Luţaş, “Bypassing KPTI using the speculative behavior
of the SWAPGS instruction,” in Proc. BlackHat Europe Conf., 2019,
pp. 1–20. [Online]. Available: https://i.blackhat.com/eu-19/thursday/
eu-19-Lutas-bypassing-KPTI-using-the-speculative-Behavior-of-the-
SWAPGS-instruction-wp.pdf

[10] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“NetSpectre: Read arbitrary memory over network,” in Proc. Eur. Symp.
Res. Comput. Security, 2019, pp. 279–299.

[11] M. Behnia et al., “Speculative interference attacks: Breaking invisible
speculation schemes,” 2020, arXiv:2007.11818.

[12] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in Proc. 27th USENIX Security Symp., 2018, pp. 973–990.

[13] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Proc. 40th IEEE Symp. Security Privacy (S P), 2019, pp. 1–19.

[14] A. Bhattacharyya et al., “SMoTherSpectre: Exploiting speculative exe-
cution through port contention,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2019, pp. 785–800.

[15] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (STT): A comprehensive protection for spec-
ulatively accessed data,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchit., 2019, pp. 954–968.

[16] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in Proc. 52nd
Annu. IEEE/ACM Int. Symp. Microarchit., 2019, pp. 572–586.

[17] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu,
“Specshield: Shielding speculative data from microarchitectural covert
channels,” in Proc. 28th Int. Conf. Parallel Archit. Compilation Techn.
(PACT), 2019, pp. 151–164.

[18] D. Townley and D. Ponomarev, “SMT-COP: Defeating side-channel
attacks on execution units in SMT processors,” in Proc. 28th Int. Conf.
Parallel Archit. Compilation Techn. (PACT), 2019, pp. 43–54.

[19] U. Nezir, B. Lus, and G. Kucuk, “Improved resource scheduling for
lightweight SMT-COP,” in Proc. 6th Int. Conf. Comput. Sci. Eng.
(UBMK), 2021, pp. 575–580.

[20] M. Taram, X. Ren, A. Venkat, and D. Tullsen, “SecSMT: Securing SMT
processors against contention-based covert channels,” in Proc. USENIX
Security Symp., 2022, pp. 3165–3182.

[21] J. Fustos, M. Bechtel, and H. Yun, “SpectreRewind: Leaking secrets to
past instructions,” in Proc. 4th ACM Workshop Attacks Solutions Hardw.
Security, 2020, pp. 117–126.

[22] T. Rokicki, C. Maurice, and M. Schwarz, “CPU port contention without
SMT,” in Proc. Eur. Symp. Res. Comput. Security, 2022, pp. 209–228.

[23] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
Proc. IEEE Symp. Security Privacy (SP), 2020, pp. 1–19.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in Proc. 22nd Annu. Int. Symp.
Comput. Archit., 1995, pp. 392–403.

[25] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptogr. Eng., vol. 8, no. 1, pp. 1–27, 2018.

[26] W. Xiong and J. Szefer, “Survey of transient execution attacks,” 2020,
arXiv:2005.13435.

[27] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A hybrid cache partitioning-sharing technique
for commodity multicores,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), 2018, pp. 104–117.

[28] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execu-
tion processors,” in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), 2018, pp. 974–987.

[29] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proc. 34th Annu. Int. Symp.
Comput. Archit., 2007, pp. 494–505.

[30] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting cache attacks via cache set ran-
domization,” in Proc. 28th USENIX Security Symp. (USENIX Security),
2019, pp. 675–692.

[31] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time detection
for cache side channel attack using performance counter monitor,” Appl.
Sci., vol. 10, no. 3, p. 984, 2020.

[32] J. Depoix and P. Altmeyer, “Detecting spectre attacks by identifying
cache side-channel attacks using machine learning,” in Proc. Workshop
Adv. Microkernel Oper. Syst., 2018, p. 75.

[33] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
“InviSispec: Making speculative execution invisible in the cache hierar-
chy,” in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO),
2018, pp. 428–441.

[34] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ‘undo’ approach
to safe speculation,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchit., 2019, pp. 73–86.

[35] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in Proc. ACM/IEEE
47th Annu. Int. Symp. Comput. Archit. (ISCA), 2020, pp. 132–144.

[36] B. Tang et al., “SpecBox: A label-based transparent speculation scheme
against transient execution attacks,” IEEE Trans. Dependable Secure
Comput., vol. 20, no. 1, pp. 827–840, Jan./Feb. 2023.

[37] Y. Zhang, Z. Zhu, and D. Meng, “DDM: A demand-based dynamic mit-
igation for SMT transient channels,” in Proc. IEEE Int. Conf. Parallel
Distrib. Process. Appl. Big Data Cloud Comput. Sustain. Comput.
Commun. Soc. Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom),
2019, pp. 614–621.

[38] X. Wu et al., “Partial-SMT: Core-scheduling protection against SMT
contention-based attacks,” in Proc. IEEE 19th Int. Conf. Trust Security
Privacy Comput. Commun. (TrustCom), 2020, pp. 378–385.

[39] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Trans. Comput. Syst., vol. 28,
no. 4, pp. 1–45, 2010.

[40] M. Escouteloup, R. Lashermes, J. Fournier, and J.-L. Lanet, “Under the
dome: Preventing hardware timing information leakage,” in Proc. Int.
Conf. Smart Card Res. Adv. Appl., 2021, pp. 233–253.

[41] “Speculative load disordering / CVE-2021-33149.” Intel. 2021. [Online].
Available: https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/advisory-guidance/speculative-
load-disordering.html

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

4490 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

[42] “Rogue system register read / CVE-2018-3640 / Intel-SA-00115.”
Intel. 2018. [Online]. Available: https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/rogue-system-register-read.html

[43] S. Owicki and D. Gries, “Verifying properties of parallel programs: An
axiomatic approach,” Commun. ACM, vol. 19, no. 5, pp. 279–285, 1976.

[44] B. Tang et al., “SPECWANDS: An efficient priority-based scheduler
against speculation contention attacks,” 2023, arXiv:2302.00947.

[45] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[46] “Duktape Javascript engine.” 2020. [Online]. Available: https://duktape.
org

[47] “Sunspider Javascript benchmarks (1.0).” Webkit. 2020. [Online].
Available: https://webkit.org/perf/sunspider/sunspider.html

[48] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys
via branch prediction,” in Proc. Cryptograph. Track RSA Conf., 2007,
pp. 225–242.

[49] A. Limaye and T. Adegbija, “A workload characterization of the SPEC
CPU2017 benchmark suite,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw. (ISPASS), 2018, pp. 149–158.

[50] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 469–480.

Bowen Tang is currently pursuing the Ph.D. degree
with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China.

His research interests include system security, bug
detection, and virtualization.

Chenggang Wu received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences (CAS), Beijing, China.

He is a Professor with the Institute of Computing
Technology, CAS. His research interests include the
dynamic compilation, virtualization, bug detection
on concurrent program, and system security.

Prof. Wu has served on the program committees
of many major conferences.

Pen-Chung Yew (Life Fellow, IEEE) received the
Ph.D. degree from University of Illinois at Urbana–
Champaign, Champaign, IL, USA.

He is a Professor with the CSE Department,
University of Minnesota-Twin Cities, Minneapolis,
MN, USA, where he was the Head of the
Department and the Holder of the William-Norris
Land-Grant Chair Professor from 2000 to 2005.
His current research interests include system virtu-
alization, compilers, and architectural issues-related
multicore/many-core systems.

Yinqian Zhang received the Ph.D. degree from the
University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA.

He is a Professor with the CSE Department,
Southern University of Science and Technology
(SUSTech), Shenzhen, China. Before joining
SUSTech in 2021, he was an Associate Professor
with the CSE Department, Ohio State University,
Columbus, OH, USA. His research interest is
computer system security, with particular emphasis
on cloud computing security, OS security, and
side-channel security.

Mengyao Xie received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2022.

Since then, she has been working with the Institute
of Computing Technology, Chinese Academy of
Sciences. Her research interests include system secu-
rity and virtualization.

Yuanming Lai received the M.S. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2016.

He is currently with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China. His research interests include system security
and machine learning.

Yan Kang received the M.S. degree from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 2017.

She is currently working with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing. Her research interests include
software and system security.

Wei Wang received the M.S. degree from Capital
Normal University, Beijing, China, in 2021.

He is currently working with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing. His research interests include
software security, adversarial attack, and robustness.

Qiang Wei is a Professor with the State
Key Laboratory of Mathematical Engineering and
Advanced Computing, Zhengzhou, China. His main
research interests are network and information
system security, including software vulnerability
analysis and cloud computing security.

Zhe Wang received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences (CAS), Beijing, China

He is an Associate Professor with the Institute of
Computing Technology, CAS. His research interests
are in dynamic binary translation, multithreaded pro-
gram record-and-replay, operating systems, system
virtualization, and memory corruption attacks and
defenses.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 01,2024 at 09:18:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

