
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

SPECBOX: A Label-Based Transparent
Speculation Scheme Against Transient

Execution Attacks
Bowen Tang, Chenggang Wu, Zhe Wang, Lichen Jia, Pen-Chung Yew, Yueqiang Cheng, Yinqian Zhang,

Chenxi Wang, Guoqing Harry Xu

Abstract—Speculative execution techniques have been a cornerstone of modern processors to improve instruction-level parallelism.
However, recent studies showed that this kind of techniques could be exploited by attackers to leak secret data via transient execution
attacks, such as Spectre. Many defenses are proposed to address this problem, but they all face various challenges: (1) Tracking data
flow in the instruction pipeline could comprehensively address this problem, but it could cause pipeline stalls and incur high performance
overhead; (2) Making side effect of speculative execution imperceptible to attackers, but it often needs additional storage components and
complicated data movement operations. In this paper, we propose a label-based transparent speculation scheme called SPECBOX. It
dynamically partitions the cache system to isolate speculative data and non-speculative data, which can prevent transient execution from
being observed by subsequent execution. Moreover, it uses thread ownership semaphores to prevent speculative data from being
accessed across cores. In addition, SPECBOX also enhances the auxiliary components in the cache system against transient execution
attacks, such as hardware prefetcher. Our security analysis shows that SPECBOX is secure and the performance evaluation shows that
the performance overhead on SPEC CPU 2006 and PARSEC-3.0 benchmarks is small.

Index Terms—Transient Execution Attack, Cache Partition, Shared Cache Access Control

F

1 INTRODUCTION

Five decades of exponential growth in processor performance
has led to today’s ubiquitous computation infrastructure.
At the heart of such rapid growth are many optimiza-
tions employed in today’s processors. Among them, using
speculative execution to alleviate pipeline stalls caused by
control flow transfer and memory access is one of the
most effective optimizations in modern processors. However,
recent studies have shown that this kind of techniques
can introduce security vulnerabilities and be exploited by
attackers via transient execution attacks (TEAs) such as the
well-known Spectre [1]. These vulnerabilities are widely
present in billions of processors produced by mainstream
manufacturers such as Intel, AMD and ARM.

Listing 1 is a proof-of-concept (PoC) code in the Spectre
attack. First, the attacker steers the index value to be less
than SIZE, thereby training the branch predictor to choose

• Zhe Wang is the corresponding author.
• Bowen Tang, Chenggang Wu, Zhe Wang, Lichen Jia are with Institute

of Computing Technology, Chinese Academy of Sciences, Beijing 100190,
China, and also with University of Chinese Academy of Sciences, Beijing
100049, China. Email: {tangbowen, wucg, wangzhe12, jialichen}@ict.ac.cn

• Pen-Chuang Yew is with Computer Science & Engineering Department
of the University of Minnesota-Twin Cities, MN 55455, USA. Email:
yew@umn.edu

• Yueqiang Cheng is with the Head of Security Research at NIO USA.
E-mail: strongerwill@gmail.com

• Yinqian Zhang is with Department of Computer Science and Engineering
of the Southern University of Science and Technology, Shenzhen 518055,
China. Email: yinqianz@acm.org

• Chenxi Wang and Guoqing Harry Xu are with Computer Science
Department of University of California, Los Angeles, CA 90095-1596,
USA. Email: {wangchenxi, harryxu}@cs.ucla.edu

the fall-through branch in Line 5. After that, the attacker
steers the index value to be greater than SIZE, which leads
to an out-of-bound access to the secret during the speculative
execution. Then, the attacker utilizes the secret to index the
dummy array. This will load the dummy[val*64] item into
the cache. Eventually, when the processor determines that it
is a mis-prediction in Line 5, it will squash the instructions of
Lines 6-7 and follow the correct path. In the current design,
the processor will not clean up the side effects in the cache (i.e.
the data brought in during the mis-speculative execution).
The attacker can scan the dummy array in the cache, and
measure the access time of each array element. According
to the access latency, the attacker can decide which item has
been loaded into the cache, and thereby infer the secret value.

1 #define SIZE 10
2 uint8 array[SIZE];
3 uint8 dummy[256*64];
4 uint8 victim(int index) {
5 if (index < SIZE) {
6 uint8 val = array[index];
7 return dummy[val*64];
8 } else return 0;
9 }

10 victim(8);// Step1: train the branch
11 flush_cache();// Step2: prepare cache layout
12 victim(100); // Step3: access the secret
13 timing_dummy(); // Step4: measure cache layout

Listing 1: A proof-of-concept (PoC) code of the Spectre attack.

To mitigate TEAs, several approaches have been proposed
in recent years. The first category of approaches is to delay
the use of the data until the instructions that produce the data
are no longer speculative, i.e. the data is no longer “tainted”
[2] and “safe” to use. For the example in Listing 1, the out-

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

of-bound index value in Line 6 cannot be used to access the
dummy array until the branch condition in Line 5 is resolved.
The representative schemes are STT [2], SDO [3], NDA [4],
ConditionalSpec [5], Delay-on-Miss [6] and SpecShield [7].
These defenses comprehensively prevent the execution of
instructions that may cause information leackage. However,
delaying data propagation can cause pipeline stalls, which
may incur high performance overhead [2], [4], [6], [7].

The second category is to keep speculative execution
non-blocking but make it "invisible" to the subsequent in-
structions if it fails. In Listing 1, the array elements of dummy
loaded into the cache during the speculative execution will be
removed and cannot be accessed in the timing_dummy().
From the perspective of microarchitecture designers, this
approach is preferable because of its compatibility with
other optimization mechanisms that are critical to processor
performance [8]. The representative works are SafeSpec [9],
InvisiSpec [10], CleanupSpec [11] and MuonTrap [8].

To achieve the invisible speculative execution, InvisiSpec,
SafeSpec, and Munontrap choose to add an extra storage to
keep the speculatively installed data. When the speculative
instructions are committed, the speculatively installed data
will be re-installed into the cache hierarchy from the memory
system or the newly added storage to make it visible. In
contrast, CleanupSpec allows the data to be installed in the
cache hierarchy during the speculative execution, and the
replaced data is stored into a newly added storage. The
replaced data will be re-installed into the cache hierarchy to
rollback the cache state only when speculation fails. Since
most speculation will succeed, CleanupSpec has a higher
performance in general [11]. But, the re-install operations are
required no matter whether the speculation succeeds or fails.
Such additional data movement on the cache hierarchy can
reduce its benefit and degrade its performance.

In this paper, we re-exam the invisible speculative exe-
cution strategy along with the cache design, and propose
a new transparent speculation scheme, called SPECBOX. It
modifies the cache to support the invisible speculative access
efficiently. The speculative data and the non-speculative data
are distinguished in the cache, so the extra storage and data
movement are no longer needed. To achieve this, SPECBOX
divides each cache set into two domains. Each cache line
in the set is distinguished by a 1-bit label to indicate which
domain it is in. The temporary domain contains the speculative
data and the persistent domain contains the non-speculative
data. When the speculation fails, the speculatively installed
cache lines in the temporary domain will be invalidated.
When the speculation succeeds, SPECBOX only needs to flip
the bits to switch the corresponding cache lines from the
temporary domain to the persistent domain. Thus, it totally
avoids the data movement required in other schemes, and
hence, improves the performance.

In addition to isolating the speculative data in the single-
core, we also extend the label-based method to the multi-core
environment and make the speculative data invisible across
cores. Physically isolating hardware threads’ speculative data
from each other can also achieve this, but it limits the
scalability and has low resource utilization. The core idea in
SPECBOX is to dynamically mark the thread ownership of each
shared cache line in the temporary domain, and emulate a behavior
that is similar to accessing the thread-private cache. To achieve

that, SPECBOX attaches each cache line with an N-bit label,
with each bit bound to a hardware thread (HT). If the bit
corresponding to a HT is set, it means this HT owns this
cache line. When a HT accesses a cache line which is not
owned by this HT in the temporary domain, SPECBOX will
simulate a latency equivalent to a miss and then sets the
corresponding bit, even if it has been speculatively installed
by other threads. When a HT evicts a cache line owned by
other HTs in the temporary domain, SPECBOX will just reset
its corresponding bit. The set/reset actions are similar to the
P/V semaphore operations in parallel programming, so we
call the N-bit label thread-owner semaphore (TOS).

To summarize, we make the following contributions:

1) We propose a new label-based transparent speculation
scheme, called SPECBOX, against transient execution
attacks. It leverages a cache partitioning approach on
speculative data, which eliminates the need for data
movement during the switch between speculative and
non-speculative execution.

2) We propose a thread-ownership semaphore to logically
isolate shared data among threads to prevent side
channels to be formed in the shared cache.

3) The security analysis shows that the proposed label-
based transparent speculation scheme is secure. And
the performance evaluation shows that the overhead
of SPECBOX is substantially lower than that of STT,
InvisiSpec and CleanupSpec on SPEC CPU 2006 and
PARSEC-3.0 benchmarks.

The rest of the paper is organized as follows. Section 2
reviews the transient execution attacks and existing defenses.
Section 3 explains the threat model. Section 4 summaries
the challenges SPECBOX confronts. Section 5 details the
design of SPECBOX. Section 6 presents the security analysis
of SPECBOX. Section 7 provides the security and performance
evaluation. Discussion, related works, and conclusion are
provided in section 8, section 9, and section 10 respectively.

2 BACKGROUND

2.1 Speculative Execution

Speculative execution techniques, such as branch predic-
tion [12] and memory disambiguation [13], are commonly
used on modern out-of-order processors to improve perfor-
mance. To avoid pipeline stalls, the processor continues to
speculatively execute instructions beyond a branch instruc-
tion along a predicted path before the branch condition is
resolved. If the prediction fails, the mis-speculated instruc-
tions will be squashed. A re-order buffer (ROB) is used to
maintain correctness after the out-of-order execution. When
an instruction reaches the head of the ROB and has completed
its execution, it updates the machine state and releases its
held resources, this process is called commit. An instruction
not yet committed is called an in-flight instruction.

On modern processors, the side effects caused by the
mis-speculated instructions such as the data brought into
the cache memory during the speculative execution are not
cleaned up. It will not affect the correctness of the program
execution, but could impact the timing of subsequent instruc-
tions and can be used by attackers to create covert channels.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

2.2 Timing-Based Covert Channel

The core logic of a transient execution attack can be divided
into three steps: a) Accessing the secret through speculative
execution; b) Encoding the secret through side effects that
affect the subsequent execution timing; c) Decoding the
secret through executing some operations and time their
execution [14]. The first two steps are collectively referred to
as the sender, and the third step is referred to as the receiver.
The transmission channel between the sender and receiver is
known as timing-based covert channel [15].

According to the length of the information carrier’s life
span, timing-based covert channels can be grouped into two
types: the persistent and the volatile [16]. The information
carrier in a persistent covert channel is usually the layout of a
storage unit, such as the cache [17], [18], translation lookaside
buffer (TLB) [19], and Paging Structure Cache [20], or a state
change such as the on/off state of high bits in the AVX2
vector register [21]. In a persistent covert channel, the side
effects encoded by the sender will exist for a relatively long
period of time to allow the receiver to extract the secret
value. In contrast, the information carrier of a volatile covert
channel is usually a shared resource between threads, such as
floating-point unit (FPU) [22], execution unit port [23] and
memory bus [24]. The side effect exploited by the sender
is to delay the execution time of the receiver by competing
for such resources. Because resource competition is transient,
the receiver must measure the timing while the sender is
accessing the share resources. In this case, the sender and the
receiver must be synchronized, which increases the difficulty
for the attacker.

2.3 Transient Execution Attacks

Transient execution attacks (TEA) can be divided into two
categories: the Spectre-type and the Meltdown-type attacks
[14]. Attackers can directly access unauthorized memory
locations or registers during the out-of-order execution in a
Meltdown-type attack. Unlike the Spectre-type attacks, which
primarily exploiting speculative execution, the Meltdown-
type vulnerabilities are mostly due to unintended hardware
bugs. They can thus be fixed in the hardware. For Spectre-
type attacks, the attacker will first train the prediction units,
such as the pattern history table (PHT), branch target buffer
(BTB) and return stack buffer (RSB). After that, the attacker will
bypass the protection code to execute a wrongly speculative
path, such as a bound check [25], data cleanup [26] and stack
pointer switching [27], and then access the secret. Finally,
the attacker will transmit the secret through a timing-based
covert channel.

2.4 Existing Defenses Against TEAs

For TEAs, a common defense is to prevent sensitive data from
being transmitted to covert channels. SpecShield [7] checks
whether there is an unresolved branch or an instruction
that triggers an exception before a load instruction, and
then determines whether the loaded data can be passed to
subsequent instructions. ConditionalSpec [5] puts forward
the concept and a detection method of “safe dependence”,
and proposes an S-pattern filtering strategy to improve the
detection efficiency according to the characteristics of TEAs.

NDA [4] and STT [2] use dataflow tracking similar to taint
propagation, and track those instructions that may cause
information leakage. Those instructions are forced to delay
until their dependent instructions become safe. To reduce
the overhead caused by the delay and the tracking analysis,
SDO [3] adds a safe value prediction mechanism based on
STT. But the performance overhead is still high due to the
pipeline stalls that cannot be avoided.

Make speculative execution “invisible” by cleaning up
all side effects after speculative execution could avoid the
pipeline stalls, and prevent side effects from being used by
attackers to transmit the secret data. InvisiSpec [10] chooses
to add a speculative buffer to keep the speculatively installed
data. Similarly, SafeSpec [9] and MuonTrap [8] use a shadow
cache and a non-inclusive L0 cache, respectively. If speculation
succeeds, the speculative installed data will be re-installed
into the newly introduced storage; if speculation fails, the
speculatively installed data in these storages will be cleaned
up. Since most speculation will succeed, these methods will
introduce non-trivial overhead. Hence, CleanupSpec [11] was
proposed to allow the data be speculatively installed into
the original cache, and only rollbacks the cache state via
re-installing the replaced data when speculation fails.

Actually, the re-install operations are required no mat-
ter whether the speculation succeeds or fails. Such data
movement triggered by the re-install operations will degrade
performance. It motivates us to develop a scheme that can
perform an "invisible" speculative execution inside the cache
system without requiring any “data movement” during the
switch between speculative and non-speculative execution.

3 THREAT MODEL

In this paper, we mainly focus on the cache system that
is vulnerable to the transient execution attacks. Here, we
assume attackers have the following abilities:

• Ability to train the control flow prediction units and
memory disambiguation units in order to exploit all
Spectre- and Meltdown-like vulnerabilities.

• Ability to find/execute the gadgets and to access/encode
secret data. The secret data here refers to various protected
memory locations and registers.

• Ability to know the cache indexing method and its
replacement strategy, which means the attacker can install
or evict a cache line at any location in the cache.

• Ability to launch multiple threads located on a SMT core
and/or different cores, and control their interleavings in
order to transmit the stolen secret data via cache.

Our goal is to defeat TEAs that use persistent covert
channels. For TEAs using volatile covert channels, such as port
contention [23], [28], it can be mitigated by turning off SMT,
using security-sensitive thread scheduling [29], or using time-
division multiple accessing (TDMA) on shared resources [30].
These methods are orthogonal to our approach.

Also, we do not consider physical covert channels, such
as electromagnetic signals [31] and power consumption [32],
[33]. These channels are generally noisier, requiring longer
time for attackers to observe the effects. At present, these
types of covert channels cannot be used in transient execution
attacks.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Load A

Load A

Evict A

Load B

Load A

Load B

(a) Acceleration-based Encoding in Concurrent Mode Attack

Cache State Migration
(shared cache between Tsender and Treceiver)

Attacker Workflow

A

Install A

①

②

B

A

Install B

replace B
& install A

①

②

③

Ti
m

el
in

e
Ti

m
el

in
e

Tsender Treceiver

Tsender Treceiver

(b) Deceleration-based Encoding in Concurrent Mode Attack

A

③

Evict A

way 0 way 1 way 2 way 3 way 4 way 5 way 6 way 7

way 0 way 1 way 2 way 3 way 4 way 5 way 6 way 7

Fig. 1: The Encoding Methods in Concurrent Mode Attacks.

4 PROBLEM ANALYSIS

4.1 Encoding Methods of Cache Covert Channel

As mentioned in subsection 2.2, the sender illegally accesses
the secret and encodes it into the cache layout; the receiver
infers the secret via timing access to the cache. The encoding
schemes can have the following two types.

1) Acceleration-based encoding. The sender first evicts an
item from the cache, then decides whether to re-install
this item or not according to the speculative accessed
secret value. Taken a 1-bit secret as an example, if the
secret value is 1, the item will be re-installed back.
Therefore, when the receiver accesses this item again,
the timing will be short due to the cache hit. The receiver
can reason about the secret value being 1. Otherwise,
it is 0. Most Flush+Reload [18] attacks adopt such an
encoding scheme.

2) Deceleration-based encoding. The sender first installs
an item into the cache, then decides whether to replace
this item with another item or not according to the secret
value. Also taken a 1-bit secret as an example, if the
secret value is 1, the new item will replace the original
item. Therefore, when the receiver accesses the original
item again, the timing will be long due to the cache
miss. The receiver can conclude that the secret value is 1.
Otherwise, it is 0. Most Prime+Probe [17] attacks adopt
such an encoding scheme.

4.2 Attack Modes

In most common attack scenarios, the above two encoding
methods are performed in a serialized manner, that is, the
receiver’s decoding will not begin until the sender’s encoding
has been completed. However, in multi-thread applications,
the encoding can be conducted in a concurrent manner.
The attacker can launch two concurrent threads located on
different cores or a SMT core, with one thread acting as
the sender and the other as the receiver. Using browser as
an example, multiple threads of a malicious plug-ins can
occupy different cores. Their targets can be user’s passwords
or cookies, which are protected by the sandbox in the browser.
The malicious plug-ins cannot access them directly, but can

way 0 way 1 way 2 way 3

B

① Load A

B

B

B

Install A in
T-Domain

Install B in
T-Domain

Replace A
to install C

A

A

C

C A

C A

way 4 way 5 way 6 way 7

② Load B

③ Load C

④ Commit A

⑤ Commit B

⑥ Squash C

BA

Reinstall A in
P-Domain

Switch B to
P-Domain

Evict C

Ti
m

el
in

e

Request Cache State Migration

persistent domain cacheline
(P-Domain)

temporary domain cacheline
(T-Domain)

Fig. 2: An example of the state migration on one cache set.

exploit the Spectre-like vulnerability to access them in a wrong-
path speculative execution, and leverage the shared cache as
a covert channel to transmit them.

Figure 1 shows how the two encoding methods can be
implemented in a concurrent mode. For the acceleration-
based method, the Treceiver first evicts the item and then the
Tsender speculatively accesses the secret and re-installs the
item according to the 1-bit secret value (assuming the value is
1). Immediately afterwards, the receiver access the item again
and measures the access time. At that time, the speculation
of Tsender has not been committed yet, which means other
defenses, such as cleanup or rollback, has not yet to be carried
out. The Treceiver’s revisit will be hit. Similarly, for the
deceleration-based method, after the Tsender has replaced
the item primed by the speculative install of Treceiver, and
before the process of Tsender is committed, the Treceiver will
experience a cache miss when the replaced item is accessed
again.

5 OUR SOLUTION

To defeat the above attacks in both serial and concur-
rent modes and keep the speculative execution efficient,
we proposed a label-based transparent speculation scheme,
called SPECBOX. In SPECBOX, all speculative (i.e. in-flight)
operations, such as loads/stores and instruction fetching
that may affect the cache system, are regarded as unsafe
until they reach the head of ROB and are committed. As
mentioned earlier, the core ideas of SPECBOX consists of two
major components: domain partition and thread ownership
semaphore. The details of them are provided in the following
subsections subsection 5.1 and subsection 5.2. In addition,
for other auxiliary components in the cache system such as
coherence states, TLB and hardware prefetcher, SPECBOX
also secures them from being affected by the threatening
speculative execution, which are presented in subsection 5.3.

5.1 Domain Partition

5.1.1 Partitioning Scheme
As shown in Figure 2, SPECBOX partitions each cache set into
two domains: (1) the temporary domain that contains the data

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

 Install the new
cacheline in T- Domain

 Replace an old cacheline to install
the new cacheline in T-Domain

Match Address T-Domain Is Full

 Access but not modify the
metadata for replacement

 Ignore
the request

Match AddressMatch Address

 Evict the cacheline
in T-Domain

DomainDomain

 Switch the
cacheline to P-Domain

IF/Ld/St

Commit
Squash

Hit

Miss

No

Yes

Miss

Hit

 Reinstall the
cacheline in P-Domain

Miss

P
T

P

T

Hit

Request

Fig. 3: Data access flow in temporary/persistent domains

installed by the in-flight operations, and (2) the persistent
domain that contains the data installed by the committed
operations. The partition is implemented by adding a 1-bit
label, called T/P (Temporary/Persistent) flag, on each cache
line’s tag area. If the cache line’s T/P flag is 0, it belongs to
the temporary domain; otherwise, it belongs to the persistent
domain. By modifying the T/P flag, SPECBOX can switch
the domain the cache line belongs to. The domain needs
not be contiguous in physical space but need to have a pre-
determined capacity, so that it will not compete against each
other. When installing a new cache line or switching a cache
line’s domain from the other domain, SPECBOX will check
whether the current domain has reached its capacity. If it has,
it will wake up the replacement module to select a cache line
within the domain and replace it.

5.1.2 Access Control

Figure 3 shows the access flow on a cache with the proposed
partitioning scheme. The access flow starts from the yellow
box marked as “Request”. À If the request is an in-flight
operation and is a cache “hit”, regardless of whether it
hits the temporary domain or the persistent domain, the
operation can directly access the data without modifying
the metadata for cache replacement. Á If it is a cache miss
and the temporary domain is full, the cache will select one
victim cache line from the temporary domain and replace it.
Â If the temporary domain is not full, it will install a new
cache line in the temporary domain. Ã When an in-flight
access operation is squashed, the cache will receive a squash
request from CPU. It checks whether the data installed by the
operation is still in the temporary domain and evicts the entry
if so. Ä If the data installed is not in the temporary domain,
it just ignores the request. Å When an in-flight operation
is committed, the cache will receive a commit request from
CPU. It will check whether the data installed by the operation
is in the temporary domain and if so, the cache converts the
cache line to the persistent domain by setting the T/P flag.
Meanwhile, to keep the capacity constant, the cache will
evict one victim cache line from the persistent domain and
switch it to the temporary domain. If the data installed by
the operation is already in the persistent domain, it follows
case Ä and ignores the request. Æ If the data is neither in the
persistent domain nor in the temporary domain, the cache
will re-install it in the persistent domain.

ROB

L2-Cache

Fe
tc

he
r

D
ec

od
er

R
en

am
e

Sc
he

du
le

r

EU
N

ot
ifi

er
LS

U

Notifier Bus

FQ

<sn>

<pc, ihit_mask>

<pc, ihit_mask>

<
br

>

<
sn

>

<
m

em
_a

dd
r,

dh
it

_m
as

k>

L1-ICache

<addr, CommitReq/SquashReq>

NFBNFB

L1-DCache

New wire
New hardware

Fig. 4: The enhanced pipeline and cache system with the notifier.

Figure 2 depicts an example of the state transition (i.e.
domain switches) on one cache set during some request
accesses. This set is 8-way associative, and the capacity ratio
of the temporary and persistent domains is 2:6. Firstly, the
cache receives two consecutive load requests, i.e., Load A (À)
and Load B (Á) in the figure. Since the A and B are missing
in the cache, these requests will trigger cache miss handling
events. After A and B are fetched from the next level cache
or memory, they are installed into the temporary domain;
Then, the cache receives the Load C request (Â) and C is also
missing. But, there is no more cache line in the temporary
domain in the set, so the cache chooses to replace A with
C in accordance with the replacement algorithm. After that,
the in-flight operation to which the Load A request belongs is
committed (Ã), the cache receives a Commit A request. But,
A has been evicted from the set. The cache thus selects a
victim cache line from the persistent domain and re-installs
A. After that, the cache receives a Commit B request (Ä). It
first selects a victim cache line from the persistent domain
to evict, and switch it to the temporary domain, and then
switch B to the persistent domain. Finally, the cache receives
a Squash C request (Å). It evicts the cache line that contains
C.

5.1.3 Notify Framework

We added a notifier in the commit stage of the pipeline
(shown in Figure 4). It notifies the cache system to switch
domain or clean up the corresponding cache line when an
in-flight operation is committed or squashed. The notifier per-
forms different actions according to the types of operations.

For Load/Store. In order to know which level of the cache
hierarchy has been accessed by a load/store instruction,
SPECBOX adds some bits as dhit_mask in each entry of the
Load/Store Unit (LSU). They record whether the access to the
cache level has been hit or not. When the ROB commits or
squashes a load/store instruction, it will signal the notifier
with the sequence_number (sn) of ROB. Subsequently, the
notifier acquires the LSQ with the sn for the memory_address
and dhit_mask, and then generates the notification request.

For IFetch. Although the CPU does not track the instruction
fetching process directly, we could still infer the process by
analyzing the effects of instruction fetching. One portion of
the instructions have been decoded and dispatched to the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

ROB, and the other portion have not yet been decoded in
the Fetch Queue (FQ). Similar to LSU, SPECBOX adds the
ihit_mask bits in the entries of the FQ and ROB. When the
Execution Unit (EU) resolves a branch and accepts/rejects the
prediction of the branch, it will signal the notifier with the
resolved_branch (br) to obtain the PC_address and ihit_mask of
all the fetched instructions located in that branch from the
FQ and ROB, and then generate the notification requests.

In order not to disturb the instruction fetching and
load/store operations, the notification requests will be first
sent to the L1 I-cache and L1 D-cache through the Notifier
Bus. Then the L1 cache controllers filters these requests and
forward the requests to the lower-level cache through the
interconnect. Moreover, in our study, we find that there is a
significant amount of notification requests for the same cache
line caused by contiguous cache accesses (mostly due to
instruction fetching). Therefore, SPECBOX adds a Notification
Fill Buffer (NFB) in Notifier Bus with 16 entries (i.e. the size of
the cache line) to merge the redundant requests to the same
cache line.

5.2 Thread Ownership Semaphore (TOS)
Inter-thread isolation by allocating a private memory region
to each thread could make the speculation invisible across
cores, but it will lower the resource utilization and limit the
scalability. In this paper, we propose a label-based solution
called thread ownership semaphore (TOS). It is based two
insights: 1) it’s not necessary to keep it invisible for the data
installed by the committed operations; 2) The data installed
by the in-flight operations of one thread need not be forever
invisible to other threads. If another thread has also accessed
the data during the in-flight operations, it should be safe to
share the data between the two threads. So, we conclude that
the problem of maintaining invisibility between the threads
is equivalent to the problem of tracking the ownership of
each thread and emulate its "private" temporary domain.

5.2.1 Access Control
TOS is an N-bit label added to each cache line’s tag area.
Each bit of TOS is bounded to a hardware thread (HT), a HT
owns a cache line only if the corresponding bit is set. The
ownership means the cache line can be accessed by the in-
flight operations of the HT. When a HT accesses the cache line
it disowns, the SPECBOX will emulate a latency equivalent
to a cache miss and then set its corresponding TOS bit. On
the other hand, if a HT evicts a cache line owned by other
HTs, the SPECBOX will simply reset the TOS bit instead of
evicting the cache line. In summary, for each cache line in
the temporary domain, SPECBOX performs different actions
according to the different situations:
• A thread can directly access a cache line it owns.
• When a thread accesses a cache line that it does not

own, SPECBOX needs to check whether it is being owned
by other threads or not: a) if it is not owned by any
other thread, which means it is invalid or unused, then
the thread can install the requested data in it; b) if it is
being owned by another thread, then a cache miss will be
emulated by SPECBOX to hide its true access latency. In
either case, after the above process, the cache line will be
marked as being owned by this thread.

Treceiver install
block B and
set its TOS

way 0 way 1 way 2 way 3 way 4 way 5 way 6 way 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

B
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

B
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Tsender reset
its TOS

Load A

Load A

②

Ti
m

el
in

e

Tsender Treceiver

A
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

①

Cache State Migration
(shared cache between Tsender and Treceiver)

way 0 way 1 way 2 way 3 way 4 way 5 way 6 way 7

Attacker Workflow

Load B

Load A
(evict B)

Ti
m

el
in

e

Tsender Treceiver

①

Load B

②

③

Load B Tsender install
block B and
set its TOS

Tsender install
block A and
set its TOS

(a) How TOS thwart Concurrent Acceleration-based Encoding

(b) How TOS thwart Concurrent Dcceleration-based Encoding

Fig. 5: The workflow of the TOS scheme under two encoding
attacks.

• When a cache line needs to be replaced or squashed in a
thread’s in-flight operation, SPECBOX marks the thread as
no longer owning this cache line, and checks whether
other threads own this cache line or not. If they do,
SPECBOX does nothing; otherwise, SPECBOX replaces or
squashes this cache line.

• When a cache line needs to be committed in a thread’s
in-flight operation, this cache line is directly switched to
the persistent domain.

Figure 5 shows how TOS mechanism can thwart the two
encoding methods in the concurrent mode. For acceleration-
based encoding, a Load A operation of Tsender installs cache
line A in the temporary domain and set its TOS bit. Then, the
Treceiver also executes a Load A operation. Because Treceiver

is not owning the cache line A, it will experience a latency
emulated by the SPECBOX, and regard it as a cache miss. For
deceleration-based encoding as shown in Figure 5, the Tsender

first installs the cache line A in the temporary domain by
a Load B operation. Subsequently, the Treceiver performs
another Load B operation. Once the Treceiver completes, the
TOS of the two threads are both set. And then the Tsender

performs a Load A operation, which tries to replace the cache
line B. At that time, SPECBOX just resets the TOS of Tsender

instead of evicting the cache line, and suspends the Load A
request until it is committed or the Treceiver resets the TOS
also. Therefore, Treceiver cannot detect the deceleration effect
caused by Tsender.

5.2.2 Implementation of TOS on different systems
The TOS mechanism can also be easily implemented by
adding labels in tag area and modifying the access controller
of the cache. (1) For a hierarchical storage in a system that
does not support SMT, the only component with concurrent
issues is shared cache (i.e. LLC). The TOS can be efficiently
implemented with the cooperation of cache-coherence di-
rectory and the T/P flag. When the T/P flag is P, the cache
line can be accessed as usual because the TOS mechanism
only targets speculative entries. When the T/P flag is T, the
cache controller will process the accessing requests according
to the above workflow using the ownership information
recorded in the directory. (2) For a hierarchy storage in a

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

Core-1

I

Core-2

Tsender

① Load A

② Store A

Treceiver

Get-Shared A

S

E/M

S

Core-1

S/I

Core-2

Tsender

① Store A

② Store/Load A

Treceiver

Invalid A

M

E/M/S

I

(a) Speculative Load Attack (b) Speculative Store Attack

Fig. 6: The coherence-state covert channel attacks.

system that supports SMT, the private L1/L2 caches are also
vulnerable. We need to add N bits to each cache line for
the TOS, where N is the number of SMT threads. Each bit
indicates the ownership of the corresponding thread. And
for LLC, we also need to extend the directory and allow it
to distinguish different SMT threads on each core. Therefore,
for N SMT threads per core on an M-core system, the LLC
needs to add (N − 1) ·M bits for each entry.

5.3 Other Enhanced Components
In addition, SPECBOX also blocks other potential attack
surfaces from the auxiliary components in the cache system
during the speculative execution, such as coherence states,
cache management instructions and hardware prefetcher.

Coherence States. The above-mentioned attacks use the
cache layout as a medium for encoding. However, on a
multi-core processor, cache coherence states may also be
an attack surface. With the help of the Single-Writer-Multi-
Reader (SWMR) characteristic in the MESI protocol, the
attacker can complete deceleration-based encoding attacks via
the following two approaches [34] as Figure 6 shows: (a)
The Tsender executes a Load A in an in-flight operation on
core-1. If the state of the cache line A on core-1 is Invalid,
the cache controller will send Get-Shared requests to other
cores, which can cause the copy of the cache line A on
core-2 changing from Exclusive/Modified to the Shared state.
After that, if the Treceiver stores the cache line A on core-2,
it will experience a longer latency because of the need to
get an Exclusive state again; (b) In some highly-optimized
processors such as Intel P6 and MIPS R10000, the LSU will
preload the requested cache line and issue a Get-Exclusive
request for the in-flight store instruction. On such processors,
if the Tsender speculatively executes the store operation on
core-1 and find that the state of the private cache line is
not in the Exclusive/Modified state, the cache controller will
send an invalidation request to core-2. Then, the Treceiver’s
subsequent access will experience a cache miss.

Cache Management Instructions. In addition to specula-
tive load/store instructions, an attacker can leverage some
instructions for cache management during speculative ex-
ecution to encode the secret, such as prefetch, clflush and
INVD. For these rare but potentially-vulnerable instructions,
SPECBOX stalls their execution, if they are issued during the
speculative execution, and waits until they are committed to
keep them from being used in TEAs.

Hardware Prefetcher. SPECBOX also supports hardware
prefetching because it is critical to the program performance.

TABLE 1: Defense principles against various abstract attack
scenarios. “A” and “B” represent thread A and other threads
that share the cache with thread A, respectively; “t” represents
the temporary domain; “p” represents the persistent domain;
“evict” means a thread evicts a cache line; “install” means a
thread installs a cache line; “access” means a thread accesses a
cache line. Assuming the secret is a 1-bit value, the expected measured
result for an attacker can be either “fast” or “slow”.

Line Mode Sprepare Ssend Sreceive Defense Principles

1

Se
ri

al
iz

ed

Aevict
t/p

Ainstall
t At/p (fast) The cache line installed in Ssend

will be cleaned up before Sreceive.

2 Ainstall
p Aevict

t At/p (slow) The cache line in the persistent domain
cannot be evicted (replaced) in Ssend.

3 Ainstall
t Aevict

t At/p (slow)

The cache line installed into the temporary
domain by an in-flight operation is evicted
later. It will be reinstalled into the persistent
domain when that in-flight operation
needs to be committed.

4

C
on

cu
rr

en
t

Bevict
t/p

Ainstall
t Bt/p (fast)

When thread B firstly accesses the cache
line installed into the temporary domain
by thread A in Sreceive, the cache miss
will be raised.

5 Binstall
t Aevict

t Bt/p (slow)
The cache line installed into the temporary
domain by thread B cannot be evicted by
thread A in Ssend.

6 Binstall
p Aevict

t Bt/p (slow) The cache line in the persistent domain
cannot be evicted by thread A in Ssend.

To ensure the security, SPECBOX defers the speculative
accesses to train the hardware prefetcher until they are
committed. And the prefetched data will be directly installed
into the persistent domain.

TLB and Paging Structure Cache. TLB misses and Paging
Structure Cache misses may occur during the process of ad-
dress translation for speculative memory accesses. Attackers
can thus treat them as covert channels in TEAs. Considering
the low frequency of TLB miss occurrence, SPECBOX simply
delays the execution of the in-flight operation triggering TLB
miss until it is committed.

6 SECURITY ANALYSIS

After analyzing various existing TEAs, such as Spectre-
PHT/BTB/RSB/STL [25], [26], [35], [36], [37], Lazy FP [22],
MDS [38], [39], [40], LVI [41] and CacheOut [42], we abstract
the transmission process of persistent convert channel as
a three-stage model: Sprepare Ssend Sreceive. This is in-
spired by the previous work [43], [44] that is used to analyze
the defense against the traditional side channel attacks.
Sprepare represents the stage of preparing the covert channel
component. Ssend represents the stage of accessing secret
through speculative execution and encoding the secret into
the covert channel. Sreceive represents the stage of extracting
and decoding the information from the covert channel.

Based on the above model, Table 1 enumerates all possible
actions of each stage (i.e. evict or install operation performs
on any domain) and the expected states of Sreceive (i.e.
slow or fast of execution time), and shows how SPECBOX
can block them. In SPECBOX, we assume that the attacker
knows all protection schemes and can manipulate any item
in any domain during the Sprepare. However, because the
speculative execution of Ssend is illegal and will eventually
be squashed, the attacker can ONLY manipulate the data in
temporary domain. For serialized mode attacks, the reliable
timing method of Sreceive decide that it MUST begin after
Sprepare and Ssend complete (i.e. be committed in ROB).
But for concurrent mode attacks, the order constraint of

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

TABLE 2: Parameters of simulated micro-architecture.

Component Parameter Value

Core 8-issue, out-of-order, 2Ghz

Pipeline 64-entry IQ, 192-entry ROB, 32-entry LQ,
32-entry SQ, 256 Int / 256 FP registers

BPU Tournament branch predictor, 4096 BTB

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle RT latency, 4 MSHRs

Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 4 MSHRs

Shared L2 Cache 2MB bank, 64B line, 16-way, 8 cycles RT local latency,
16 cycles RT remote latency, 16 MSHRs

Coherence Protocol inclusive, Directory-based MESI protocol

Network 4×2 mesh, 128b link width, 1 cycle latency per hop

DRAM RT latency: 50 ns after L2

Ssend and Sprepare can be relaxed. In the followings, we will
elaborate the process in each attack mode and SPECBOX’s
response via a representative example.

Serialized-Mode Attacks. Take the third attack (Line 3
in Table 1) as an example. In the Sprepare stage, thread A
installs a cache line into the temporary domain through an in-
flight operation. In the Ssend stage, thread A evicts this cache
line via the replacement. In the Sreceive stage, thread A times
the access to this cache line. With SPECBOX, when the in-
flight operation in Sprepare is committed, if the corresponding
cache line is not present, SPECBOX will reinstall it. So the
slowdown of the access time cannot be measured in Sreceive.

Concurrent-Mode Attacks. Take the sixth attack (Line 6 in
the table) as an example. In the Sprepare stage, thread B
installs a cache line. In the Ssend stage, thread A performs an
in-flight operation to evict this cache line. In the Sreceive stage,
thread B times the access to this cache line. With SPECBOX,
the cache line will not be evicted in Ssend because thread B
owns this cache line. The access to this cache line by thread B
in Sreceive will hit the cache, and the slowdown of the access
time cannot be measured.

As mentioned before, besides normal data, attackers
can also exploit some metadata as the covert channel,
such as replacement trace bits or coherence state. Since
SPECBOX prevents the unsafe speculative modification of
such metadata like other works, and carefully extends the
cache without introducing new attack surface. SPECBOX can
also be used to defend against the metadata attacks, such as
Speculative Interference [45].

7 EVALUATION

7.1 Experimental Setup

We implemented SPECBOX based on O3 CPU and Ruby
cache system using Gem5 [46]. The parameter settings of
each component are shown in Table 2, which are consistent
with other studies. We evaluated the performance using 27
benchmarks from SPEC CPU 2006 and 12 benchmarks from
PARSEC-3.0. dealII and tonto are not included because they
cannot be simulated correctly by the version fe187de9bd of
Gem5 we used w/o SPECBOX. For SPEC benchmarks, we use
the ref input set and skip the first 10 billion instructions in the
fast-forward mode, and then perform cycle-level simulation
on the next 1 billion instructions. For PARSEC benchmarks,
under the full system with 8 cores, we use the simmedium

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

L
at

en
cy

 (n
s)

Array Index

Baseline SpecBox

Secret value is 79.

Fig. 7: Access latency of the auxiliary array using SPECBOX.

input set and simulate the instructions in the region of
interest (ROI) at the cycle level.

7.2 Defense Against Spectre PoC Code
To evaluate the mitigation effectiveness of SPECBOX, we
chose the Spectre-PHT attack [25] as shown in Listing 1
that uses data cache as the covert channel. In the attack, we
used a mis-predicted overflow access to obtain the secret
whose value is 79, and then use the secret to index a 256-item
auxiliary array. Finally, we measured the access latency of
each array element 100 times. The access time is shown in
Figure 7. We can see that when an access hits, the latency is
below 50 cycles. In contrast, the latency exceeds 150 cycles if
it misses. On the baseline processor without any protection,
the attacker can clearly distinguish the access time difference
of item 79 from other items in the array. However, using
SPECBOX, the item is evicted from the data cache when the
transient instruction is squashed. Therefore the attacker can
no longer distinguish the difference in access time between
item 79 and others.

7.3 Determine Domain Capacity
For SPECBOX, the capacity ratio of the two domains is crucial
to the performance because it determines the maximum
number of the speculative and non-speculative cache lines.

Two factors need to be considered when determining
the domain capacity. The first is that the temporary domain
should be sufficiently large to contain the data installed by
the in-flight operations in any speculative window. These data
will be frequently referenced within the current window and
a period of time after being committed. Figure 8 shows the
number of speculative cache lines in each cache sets sampled
in the original cache system (i.e. w/o partitioning). We can
see that, reserving 2 ways in L1-DCache and L1-ICache and
3 ways in the unified L2-Cache shared by multi-cores, are
sufficient for most single- and multi-threaded programs.

The second is that the temporary domain should not be
too large to deprive the capacity of the persistent domain.
It is because the persistent domain contains all of the non-
speculative and committed data in the cache. Its capacity is
more sensitive to the programs that have more access pat-
terns with long reuse distances, such as mcf and GemsFDTD
in SPEC. Therefore, we counted the number of accesses to
different ways in each cache set, and calculate the cumulative
distribution in original (non-partitioning) cache system. The
access order is decided by the replacement policy (e.g. LRU
in SPECBOX). As the Figure 9 shows, for most programs,
over 90% of accesses hit the first three ways in L1-DCache
and L2-Cache, and the first way in L1-ICache. It thus will not
impact the cache utilization much if we take away the last

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

0%
20%
40%
60%
80%

100%

bz
ip

2

gc
c

m
cf

ze
us

m
p

gr
om

ac
s

le
sl

ie
3d

lib
qu

an
tu

m

pe
rl

be
nc

h

om
ne

tp
p

m
ilc

sp
hi

nx
3

na
m

d

G
em

sF
D

TD

ga
m

es
s

Pe
rc

en
ta

ge

0%
20%
40%
60%
80%

100%

bz
ip

2

gc
c

m
cf

ze
us

m
p

gr
om

ac
s

le
sl

ie
3d

lib
qu

an
tu

m

pe
rl

be
nc

h

om
ne

tp
p

m
ilc

sp
hi

nx
3

na
m

d

G
em

sF
D

TD

ga
m

es
s

Pe
rc

en
ta

ge

0%
20%
40%
60%
80%

100%

bz
ip

2

gc
c

bw
av

es

ze
us

m
p

gr
om

ac
s

le
sl

ie
3d

lib
qu

an
tu

m

pe
rl

be
nc

h

om
ne

tp
p

m
ilc

sp
hi

nx
3

na
m

d

G
em

sF
D

TD

ga
m

es
s

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

Pe
rc

en
ta

ge

Smean in [0,1)
Smean in [1,2)
Smean in [2,3)

(a) L1-Dcache (b) L1-Icache

(c) L2cache

Fig. 8: We sampled a number of speculative cache lines in each
cache set per Kilo instructions, and then calculate the mean of
them as the representative value for each cache set (denoted as
Smean). The figure shows the percentage of the number of the
cache sets with different Smean. We found no cache set’s Smean is
larger then 3. We selected some benchmarks with distinguished
distributions as examples, and the remaining benchmarks are
similar to these examples.

2 or 3 ways for the temporary domain. This observation is
consistent with other approaches that adopt way-partitioning
schemes [47].

7.4 Performance Overhead
We compared SPECBOX with other open-sourced hardware-
based defenses for TEAs. The first is STT [2]. It represents
the scheme that delays the instructions that are dependent
on the transient instructions. The second is InvisiSpec [10]. It
represents the scheme that cleans up the side effect of tran-
sient instructions. The third is CleanSpec [11]. It represents
the scheme that rollbacks the cache layout when speculation
fails. In order to have a fair comparison with SPECBOX, for
both InvisiSpec and STT, we choose the futuristic model that
can resist all Meltdown-type and Spectre-type attacks; for
CleanupSpec, we choose the rollback strategy for L1-DCache
and L2-Cache. Because InvisiSpec and CleanupSpec are
currently not used in the instruction cache, we implemented
a version of SPECBOX only on data cache and not on
instruction cache (i.e. SPECBOX-NI) to compare with other
schemes.

In Figure 10 and Figure 11, we can see that the overall
performance overheads of SPECBOX for SPEC and Parsec
are 2.17% and 5.61%, respectively, which are much lower
than 20.97% and 32.27% with STT, 21.29% and 11.62% with
InvisiSpec, and also better than CleanupSpec (4.77% for
SPEC). The largest overheads of SPECBOX are 8.96% for
GemsFDTD in SPEC and 14.96% for debup in PARSEC, which
are also better than InvisiSpec and STT. When we disable
the protection on the instruction cache (i.e. L1-ICache and
the corresponding regions in L2-Cache), the performance
overheads of SPECBOX are reduced to 1.76% and 3.85%,
respectively.

Versus STT. The main overhead of STT comes from pipeline
stalls caused by the delayed execution. Therefore, for bench-
marks with more dependent instructions that can cause
pipeline stalls such as lbm, ommnetpp and gcc in SPEC, and
swaptions, ferret and bodytrack in PARSEC, the performance of
STT is inferior to InvisiSpec, CleanupSpec and SPECBOX. On
the other hand, STT has the advantage that, if an instruction
such as the load instruction whose dependent instructions

Fig. 9: We counted the distribution of hits in all cache sets and
calculated the arithmetic mean as the representative distribution
for each benchmark. The horizontal axis in the figure represents
the cache lines in one cache set, which are arranged in LRU
order from left to right, and the vertical axis is the cumulative
distribution of hit counts. We selected some benchmarks with
distinguished distributions as examples, and the remaining
benchmarks are similar to these examples

have become safe, STT can simply lift the protection and
allow it to modify the states for replacement and coherence.
It has much less overhead for those programs with less
dependence but with a large amount of cache accesses,
such as sphinix and GemsFDTD in SPEC and streamcluster in
PARSEC.

Versus InvisiSpec. The main cost of InvisiSpec comes
from reload operations when a speculative instruction is
committed. The main intention of the reload operation
is to prevent subsequent replacement of the committed
data in Speculative Buffer (SB) from being exploited by
attackers. Another intention is that the SB is private to
each core and, hence, will not receive invalidation requests
from other cores, which may lead to the violation of the
memory consistency model. It needs to reload the data from
the cache hierarchy when the in-flight load instruction is
committed, and validate the current value with the used
value during the speculative execution. If the validation fails,
it must squash and re-execute the instructions following that
load instruction. From the Figure 10, we can see that for
memory-intensive applications, such as leslie3d, GemsFDTD
and bip2, the performance differences between InvisiSpec and
other schemes are particularly distinct. The situation is more
serious in some PARSEC benchmarks such as canneal and
facesim. It is because more invalidation requests are generated
in those benchmarks due to cache coherence transactions in
a multi-core system, hence, the validation failures and re-
execution will occur more frequently.

Versus CleanupSpec. CleanupSpec addresses the problem
in InvisiSpec by allowing the replacement of a speculative
instruction and restoring the layout if it is squashed. This
scheme works well for most of the programs, such as
libquantum and omnetpp in SPEC benchmarks. But for some
programs with higher misprediction rates, such as astar, bzip2
and gobmk, it will incur a certain amount of performance
overhead (10%-20%), which is larger than that in InvisiSpec
and SPECBOX. And for some cases with low misprediction
rates but need to process subsequent squashed instructions,
like calculix and sphnix3, the stall from rollback operations
will also degrade the performance.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

-5%

15%

35%

55%

75%

95% STT InvisiSpec CleanupSpec SpecBox SpecBox-NI>100%
Pe

rf
or

m
an

ce
 O

ve
rh

ea
d

Fig. 10: The performance overhead of SPECBOX, SPECBOX with no-icache protected (denoted as SPECBOX-NI), CLeanupSpec [11],
InvisiSpec [10] and STT [2] on SPEC CPU 2006 benchmarks. For CleanupSpec, three benchmarks (i.e. zeusmp, xalancbmk, and
GemsFDTD) hang and failed in our simulation.

-5%

15%

35%

55%
InvisiSpec STT SpecBox SpecBox-NI

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d

Fig. 11: The performance overhead of InvisiSpec, STT, SpecBox
and SpecBox-NI on PARSEC 3.0 benchmarks. CleanupSpec cur-
rently does not support simulating multi-threaded applications
in Gem5.

7.5 Main Cost Analysis

7.5.1 Squashes due to wrong-path execution

The essence of caching is to exploit the space and temporary
locality in programs to overcome the memory wall. The
unchanged size of cache line guarantee the spatial locality
not be broken by SPECBOX. The first change brought by
SPECBOX is eliminating the temporary locality of the data
installed by the wrong path execution, which is also used in
InvisiSpec and CleanupSpec. Previous studies have shown
that wrong-path execution has the following two side
effects [48].

Prefetching Effect. The data loaded during wrong-path
reference will be re-referenced by the future correct-path
execution. Figure 12 gives an simplified example of this
scenario. The code in the example tries to scan an array and
find its maximum element. In an out-of-order execution, the
statements in Lines 4-6 from several iterations of the loop will
be executed in the same speculative window. However, the
array elements are un-ordered, the branch prediction on Line
5 will fail frequently, so the subsequent 4(2), 4(3), . . . , 4(n)
instructions will be squashed. In SPECBOX, we call such a
sequence Reference-Squash-Rereference (RSR). Figure 13 shows
the incremental ratio of cache misses from the committed
memory instructions in each cache level without limiting the
domain capacity, and only perform cleanup operations for
the temporary domain. From the results, We can see that RSR
access patterns exist in most workloads. Especially, when
they occur frequently in L1-DCache, it will cause a certain
degree of performance overhead as shown in xalancbmk and
soplex in SPEC.

/* get the max element in an array whose
order is random */
1: int array[10000];
2: int max = array[0];
3: for (int i = 1; i < 10000; i++) {
4: int tmp = array[i]; // RSR
5: if (tmp > max)
6: max = tmp;
7: }

4(1): int tmp = arr[i];
5(1): if (tmp > max)
6(1): max = tmp;
4(2): int tmp = arr[i+1];
5(2): if (tmp > max)
6(2): max = tmp;
...
4(n): int tmp = arr[i+n];
5(n): if (tmp > max)
6(n): max = tmp;

Static code snippet Dynamic execution sequence

Fig. 12: A simplified code snippet with a RSR access pattern.

Pollution Effect. The data loaded by wrong-path accesses
will never be re-referenced but will replace other useful
data. Furthermore, these wrong-path accesses will trigger
the hardware prefetcher, which may pollute the cache
indirectly. This situation rarely occurs in general out-of-
order processors, and usually only occurs in more aggressive
optimizations, such as run-ahead execution [49]. However, in
SPECBOX, the domain isolation scheme and secure prefetcher
scheme alleviate the pollution effect caused by the wrong-
path accesses.

7.5.2 TOS for multi-core systems

In multi-core systems with SPECBOX, one important source
of overheads comes from the emulated latency needed to
support TOS scheme when different cores perform specu-
lative accesses to a shared cache line simultaneously. The
latency is not added to all simultaneous accesses but only to
the first access from a core. Figure 14 shows the number of
such accesses to L2-Cache in systems with different number
of cores. We can see that as the number of cores increases, the
number of such accesses gradually increases. And in cases
such as canneal and freqmine, TOS scheme does have some
impact there.

In addition, as the number of cores increases, due to
the limited temporary domain capacity, the competition
among multiple cores for the same cache set will increase.
This is because TOS does not allow the cache line in the
speculative state to be unilaterally evicted by a single
owner. Figure 15 shows the performance of most PARSEC
benchmarks gradually decreases as the number of cores
increases. But for some benchmarks, such as bodytrack, ferret
and vips, when the number of cores exceeds 8, there is a
significant drop in performance.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

0%
20%
40%
60%
80%

100%
120%
140% L1-Dcache Miss

L1-Icache Miss
L2-Cache Miss

>140%
In

cr
em

en
ta

l R
at

io

Fig. 13: The incremental ratio of cache misses from the commit-
ted memory operations in the original cache system and those
in SPECBOX w/o domain capacity limitation.

TABLE 3: The hardware and power overhead of SPECBOX.

Metric L1-ICache L1-DCache L2-Cache (2/4/8-core)

Area 0.18% 0.38% 0.61% / 0.61% / 0.92%

Access time 0.15% 0.01% 3.03% / 3.03% / 3.31%

Dynamic read energy 0.77% 0.63% 0.05% / 0.05% / 0.10%

Dynamic write energy 4.72% 2.21% 0.01% / 0.01% / 0.14%

Leakage power 1.52% 0.93% 2.09% / 2.09% / 2.47%

7.6 Hardware Cost and Power Consumption
In order to implement the domain partitioning mechanism,
SPECBOX adds 1 bit to each cache line in the tag array.
To implement the thread ownership semaphores (TOS) for L1-
ICache, L1-DCache on a core with two physical SMT threads,
SPECBOX adds additional 2 bits for each cache line in the tag
array. For the shared L2 cache, the SPECBOX adds 2, 4, 8 bits,
respectively, to implement TOS on 2-core, 4-core, and 8-core
systems. We used CACTI-6.5 [50] to evaluate the hardware
cost and the power consumption for the additional storage
requirements. The results are shown in Table 3. As we can
see, the SPECBOX introduces modest hardware and power
consumption overhead.

8 DISCUSSION

Domain Capacity Configuration. As shown in our evalu-
ation (see 7.3), a pre-determined capacity ratio can satisfy
the requirement of most programs with today’s cache sizes
and associativity. However, for some performance-sensitive
applications, dynamic adjustment of the domain capacity
can provide more flexibility. SPECBOX uses a set of privilege
registers domain_cap for capacity re-configuration at each
level cache. The registers can only be controlled by special
serialized instructions to avoid being controlled by illegal
speculative execution. When the capacity of the temporary
domain becomes zero, it means that the system gives up
all security protection. Thus, the cache will treat all access
as non-speculative accesses, and the notifier will suspend
squash/commit requests to the cache.

Extending on other components. In addition to the cache
system, SPECBOX can also be extended to other storage com-
ponents and thread-shared resources that can be exploited
as persistent covert channel in TEAs. For example, Intel
processors will turn off the high bit of an execution unit if the
AVX2 instruction is not executed for a long time, and turn
it back on when it is executed. The turn-on operation will
take a lot of time, resulting in a difference in execution time,
which can be exploited by attackers [21]. In this case, we
can also add SPECBOX’s TOS scheme to AVX2 units. When a

0
5000

10000
15000
20000
25000
30000
35000

2-core
4-core
8-core

A
cc

es
s N

um
be

r

Fig. 14: The number of simultaneous speculative accesses to
L2-Cache in PARSEC on different number cores. Some cores
access the cache line for the first time.

Fig. 15: The normalized IPC of the multi-core system with
SPECBOX. (facesim and dedup crashed or hang, thus not included)

thread turns on the high bit of the AVX2 unit in an in-flight
operation, the corresponding bit in the TOS is set to 1. At
this time, if another thread also needs to perform the AVX2
instruction, and its corresponding TOS bit is 0, it will wait
for a latency that is equivalent to the duration of turning it
on. When a thread has not used the AVX2 instruction for a
while, the CPU will first set the corresponding bit in the TOS
to 0, and wait until all of the N bits in the TOS are all 0, then
it can turn off the high bit.

9 RELATED WORK

In addition to the delaying and invisible speculation approaches
mentioned in subsection 2.4, there are other defenses
achieved through other software or hardware means.

Preventing Speculative Execution on Sensitive Code. The
most direct way to prevent TEAs is to insert Fence or
SSBB instructions in the security-sensitive code. Moreover,
Spectre-type attacks can be prevented by preventing the
control-flow prediction unit from being trained by attackers.
IBRS/STIBP/IBPB [51] and Retpoline [52] prevent branch
prediction unit of different permissions and different threads
from interfering each other. CSF [53] modifies the decode
stage in pipeline to automatically inject fence instructions be-
fore branch instructions. These defenses has a simple defense
principle but may cause serious performance degradation
compared with SPECBOX.

Preventing Illegal Speculative Accesses. Another type of
mitigation is to prevent unauthorized instructions from
obtaining the secret’s value during speculative execution.
KPTI [54] separates the page table entries and TLB entries in
user-space from those in kernel-space. Chrome and Webkit
browsers [55] prevent cross-site transient access through
index masking and pointer poisoning. OISA [56] ensures that
the accesses to sensitive data must use special instructions
from a customized instruction subset, and these instructions
cannot be executed out of order. ConTExT [57] marks the
protected memory pages and registers to prevent their data
from being obtained in the out-of-order execution state.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

Comparing with these defenses, SPECBOX can protect all
the secret data from Spectre attacks instead of the special
data assigned by software.

Partition for Software Domains. Partitioning based on
processes or other software domains have been used to block
existing side-channel attacks. Some prior work [58], [59],
[60], [61] uses cache set partitioning to enhance security via
page coloring on physical-page allocation, which may lead to
possible high memory overhead. Catalyst [47] adopts Intel’s
CAT [62], a hardware-supported way partitioning scheme on
the last-level cache, to protect the Xen hypervisor with a low
memory overhead. SecDCP [63] dynamically adjusts domain
sizes according to the number of incurred cache misses to
improve the performance of CAT partitioning. DAWG [64]
improves cache way partitioning to enhance the isolation for
hits, misses and metadata across the domains. It also provides
an optimized software solution for secure domain time-
multiplexing, cache synonyms avoidance and efficient cross-
domain data transfer. However, compare with SPECBOX, all
these defenses require programmers to annotate the secrets
for protection and cannot thwart the transient-execution
attacks (TEAs) within the domain.

Randomization and Other Approaches. Randomization
and other noise-injection schemes are another effective ap-
proach to defend against side-channel attacks. For example,
CEASER [65] and RPcache [66] can randomize the mapping
of the addresses, cache sets or TLB sets, which prevent
attackers from preparing the data layouts in the target cache
set. RFillCache [67] selects random victims during cache-line
replacement to hide the side effects of cache replacement
policies. Secure-TLB [43] adopts a similar randomization
replacement strategy to defeat TLBleed attacks [19]. FTM [68]
targets cross-core Flush+Reload attacks by delaying the first
access to the last-level cache. All these defenses can only
be applied to a limited set of covert channels. However
SPECBOX is a more general defense approach for all types of
persistent covert channel in TEA.

10 CONCLUSION

This paper presented a label-based transparent speculation
scheme, called SPECBOX, to defend against transient exe-
cution attacks via cache system. It partitions each cache set
into a temporary and a persistent domain, by attaching a 1-
bit label to each item and isolate the side effect of in-flight
and committed operations. An in-flight operation can only
affect the temporary domain, and the affected items will
be switched to the persistent domain when the operation
needs to be committed. To avoid the change of the temporary
domain being observed by other synchronous executing
threads, SPECBOX introduces thread ownership semaphores,
which dynamically marks the thread ownership of each
(shared) item in the temporary domain and emulates a
thread-private storage. Analysis and extensive experiments
have shown that SPECBOX is not only secure, but also
practical and efficient.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science
Foundation of China (NSFC) under grant 61902374 and

U1736208. Pen-Chung Yew is supported by the NSF under
the grant CNS-1514444. Any opinions, findings, conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[2] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protec-
tion for speculatively accessed data,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[3] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction
for safe and efficient speculative execution,” in Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 707—720.

[4] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 572–586.

[5] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional specu-
lation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2019, pp.
264–276.

[6] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay
and value prediction,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2019, pp. 723–
735.

[7] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu,
“Specshield: Shielding speculative data from microarchitectural
covert channels,” in 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 2019, pp.
151–164.

[8] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 132–144.

[9] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[10] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible
in the cache hierarchy,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[11] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An" undo"
approach to safe speculation,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
73–86.

[12] T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level
adaptive branch prediction,” ACM SIGARCH Computer Architecture
News, vol. 20, no. 2, pp. 124–134, 1992.

[13] A. S. Huang, G. Slavenburg, and J. P. Shen, “Speculative disam-
biguation: A compilation technique for dynamic memory disam-
biguation,” ACM SIGARCH Computer Architecture News, vol. 22,
no. 2, pp. 200–210, 1994.

[14] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX
Security Symposium, 2019, pp. 249–266.

[15] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” J. Cryptogr. Eng., vol. 8, no. 1, pp. 1–27, 2018.

[16] W. Xiong and J. Szefer, “Survey of transient execution attacks,”
arXiv preprint arXiv:2005.13435, 2020.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

[17] Y. A. Younis, K. Kifayat, Q. Shi, and B. Askwith, “A new prime
and probe cache side-channel attack for cloud computing,” in 2015
IEEE International Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing, 2015, pp.
1718–1724.

[18] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium, 2014, pp. 719–732.

[19] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks,”
in 27th USENIX Security Symposium, 2018, pp. 955–972.

[20] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on
the line: Practical cache attacks on the mmu.” in NDSS, vol. 17,
2017, p. 26.

[21] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in European
Symposium on Research in Computer Security, 2019, pp. 279–299.

[22] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register
state using microarchitectural side-channels,” arXiv preprint
arXiv:1806.07480, 2018.

[23] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and
N. Tuveri, “Port contention for fun and profit,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 870–887.

[24] C. Cardenas and R. V. Boppana, “Detection and mitigation of
performance attacks in multi-tenant cloud computing,” in 1st
International IBM Cloud Academy Conference, Research Triangle Park,
NC, US, 2012, p. 48.

[25] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[26] M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-leak
forwarding: Leaking data on meltdown-resistant cpus,” arXiv
preprint arXiv:1905.05725, 2019.

[27] A. LUT, AS, and D. LUT, AS, , “Bypassing kpti using the speculative
behavior of the swapgs instruction,” 2019.

[28] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre:
exploiting speculative execution through port contention,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 785–800.

[29] A. Russo and A. Sabelfeld, “Securing interaction between threads
and the scheduler,” in 19th IEEE Computer Security Foundations
Workshop (CSFW’06), 2006, pp. 13–pp.

[30] D. Townley and D. Ponomarev, “Smt-cop: Defeating side-channel
attacks on execution units in smt processors,” in 2019 28th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2019, pp. 43–54.

[31] Z. Martinasek, V. Zeman, and K. Trasy, “Simple electromagnetic
analysis in cryptography,” International Journal of Advances in
Telecommunications, Electrotechnics, Signals and Systems, vol. 1, no. 1,
pp. 13–19, 2012.

[32] A. Velinov, A. Mileva, and D. Stojanov, “Power consumption
analysis of the new covert channels in coap,” International Journal
On Advances in Security, vol. 12, no. 1 & 2, pp. 42–52, 2019.

[33] S. K. Khatamifard, L. Wang, A. Das, S. Kose, and U. R. Karpuzcu,
“Powert channels: A novel class of covert communicationexploiting
power management vulnerabilities,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 291–303.

[34] C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime
and spectreprime: Automatically-synthesized attacks exploit-
ing invalidation-based coherence protocols,” arXiv preprint
arXiv:1802.03802, 2018.

[35] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[36] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution
using return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 2109–
2122.

[37] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies WOOT 18, 2018.

[38] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary

data sampling,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 753–768.

[39] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data
load,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 88–105.

[40] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout:
Leaking data on meltdown-resistant cpus,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 769–784.

[41] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection,” in 41th IEEE Symposium on Security and Privacy
(S&P’20), 2020.

[42] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” cacheou-
tattack. com, p. 16, 2020.

[43] S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 346–359.

[44] ——, “Analysis of secure caches using a three-step model for
timing-based attacks,” Journal of Hardware and Systems Security,
vol. 3, no. 4, pp. 397–425, 2019.

[45] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. Zhao, X. Zou, T. Un-
terluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Speculative
interference attacks: Breaking invisible speculation schemes,” arXiv
preprint arXiv:2007.11818, 2020.

[46] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[47] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in 2016 IEEE international symposium on high
performance computer architecture (HPCA), 2016, pp. 406–418.

[48] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt, “Understanding
the effects of wrong-path memory references on processor perfor-
mance,” in Proceedings of the 3rd workshop on Memory performance
issues: in conjunction with the 31st international symposium on computer
architecture, 2004, pp. 56–64.

[49] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
execution: An alternative to very large instruction windows for out-
of-order processors,” in The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
2003, pp. 129–140.

[50] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing nuca organizations and wiring alternatives for large caches
with cacti 6.0,” in 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), 2007, pp. 3–14.

[51] Intel, “Intel analysis of speculative execution side
channels, https://www.intel.com/content/architecture-and-
technology/intel-analysis-of-speculative-execution-side-channels-
paper.html.”

[52] M. F. A. Kadir, J. K. Wong, F. Ab Wahab, A. F. A. A. Bharun, M. A.
Mohamed, and A. H. Zakaria, “Retpoline technique for mitigating
spectre attack,” in 2019 6th International Conference on Electrical and
Electronics Engineering (ICEEE), 2019, pp. 96–101.

[53] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in
Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2019,
pp. 395–410.

[54] Linux, “The current state of kernel page-table isolation,
https://lwn.net/articles/741878/.”

[55] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process
separation for web sites within the browser,” in 28th USENIX
Security Symposium, 2019, pp. 1661–1678.

[56] J. Yu, L. Hsiung, M. El’Hajj, and C. W. Fletcher, “Data oblivious isa
extensions for side channel-resistant and high performance com-
puting,” in The Network and Distributed System Security Symposium
(NDSS), 2019.

[57] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre.” in NDSS, 2020.

[58] N. Waldin, M. Le Muzic, M. Waldner, E. Gröller, D. Goodsell,
A. Ludovic, and I. Viola, “Chameleon: dynamic color mapping for

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3144287, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

multi-scale structural biology models,” in Eurographics Workshop on
Visual Computing for Biomedicine, vol. 2016, 2016.

[59] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-
level protection against cache-based side channel attacks in the
cloud,” in 21th USENIX Security Symposium, 2012, pp. 189–204.

[60] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems,” in 2008 IEEE 14th
International Symposium on High Performance Computer Architecture,
2008, pp. 367–378.

[61] T. Sherwood, B. Calder, and J. Emer, “Reducing cache misses using
hardware and software page placement,” in Proceedings of the 13th
international conference on Supercomputing, 1999, pp. 155–164.

[62] Intel, “Introduction to cache allocation technology,
https://software.intel.com/content/develop/articles/introduction-
to-cache-allocation-technology.html.”

[63] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: secure dynamic cache partitioning for efficient timing
channel protection,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1–6.

[64] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative
execution processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 974–987.

[65] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp.
775–787.

[66] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” pp. 494–505, 2007.

[67] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 203–215.

[68] K. Ramkrishnan, S. McCamant, P. C. Yew, and A. Zhai, “First
time miss: Low overhead mitigation for shared memory cache side
channels,” in 49th International Conference on Parallel Processing-ICPP,
2020, pp. 1–11.

Bowen Tang is currently working toward the PhD
degree in the Institute of Computing Technology,
Chinese Academy of Sciences. His research
interests include computer architecture, compiler
optimization and software security.

Chenggang Wu is a professor at Institute of
Computing Technology, Chinese Academy of Sci-
ences. His research was supported by National
Science Foundation of China (NSF), the National
High Technology Research and Development
Program of China, and the National Science and
Technology Major Project of China. His research
interests include the dynamic compilation, includ-
ing binary translation, dynamic optimization, bug
detection on concurrent program, and software
security.

Zhe Wang is currently an assistant professor
at Institute of Computing Technology, Chinese
Academy of Sciences. His research interests
are in dynamic binary translation, multi-threaded
program record-and-replay, operating systems,
system virtualization, and memory corruption
attacks and defenses.

Lichen Jia is currently working toward the PhD
degree in the Institute of Computing Technology,
Chinese Academy of Sciences. His research
interests include computer architecture and soft-
ware security.

Pen-Chung Yew has been a professor in the
Department of Computer Science and Engineer-
ing, University of Minnesota since 1994, and was
the head of the department and the holder of
the William-Norris Land-Grant chair professor
between 2000 and 2005. He has also served
on the organizing and program committees of
many major conferences. His current research
interests include system virtualization, compilers
and architectural issues related multi-core/many-
core systems. He is a IEEE fellow.

Yueqiang Cheng is a Director of Head of Secu-
rity Research at NIO. He was senior staff secu-
rity scientist of Baidu Research between 2017
to 2021. His research revolves around building
secure systems and software, and also includes
SGX security, virtualization security, rowhammer
security, side-channel security, and autonomous
driving security.

Yinqian Zhang is an professor of Department
of Computer Science and Engineering Southern
University of Science and Technology (SUSTech).
Before joining SUSTech in 2021, he was an
associate professor at Department of Computer
Science and Engineering of The Ohio State
University. His research interest is computer sys-
tem security, with particular emphasis on cloud
computing security, OS security and side-channel
security.

Chenxi Wang is a postdoc in the Computer
Science Department of University of California,
Los Angeles. He has received the Ph.D. degrees
in Institute of Computing Technology, Chinese
Academy of Science in 2018. His research in-
terests include computer system, especially for
building hard core system, managed runtime
and big data systems for emerging hardwares,
such as non-volatile memory and disaggregated
cluster.

Guoqing Harry Xu is an Associate Professor
in the Computer Science Department of Univer-
sity of California, Los Angeles. He has led the
development of a series of optimizing compiler
and runtime frameworks in Microsoft Research
and IBM Waston Research Center, which was
accepted by many top conferences. His research
interests include computer systems, ranging from
programming languages and compilers, to run-
time/operating/distributed systems and computer
architecture.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on March 08,2022 at 03:11:48 UTC from IEEE Xplore. Restrictions apply.

