
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Dancing with Wolves: An Intra-process Isolation
Technique with Privileged Hardware

Chenggang Wu, Mengyao Xie, Zhe Wang, Yinqian Zhang, Kangjie Lu, Xiaofeng Zhang, Yuanming Lai,
Yan Kang, Min Yang, and Tao Li

Abstract—Intra-process memory isolation is a cornerstone technique of protecting the sensitive data in memory-corruption defenses,
such as the shadow stack in control flow integrity (CFI) and the safe region in code pointer integrity (CPI). In this paper, we propose
SEIMI, a highly efficient intra-process memory isolation technique for memory-corruption defenses. The core is to use the efficient
Supervisor-mode Access Prevention (SMAP), a hardware feature that is originally used for preventing the kernel from accessing the user
space, to achieve intra-process memory isolation. To leverage SMAP, SEIMI creatively executes the user code in the privileged mode. In
addition to enabling the new design of the SMAP-based memory isolation, we further develop multiple new techniques to ensure secure
escalation of user code. Extensive experiments show that SEIMI outperforms existing isolation mechanisms, including the Memory
Protection Keys (MPK) based scheme and the Memory Protection Extensions (MPX) based scheme.

Index Terms—Intra-process Memory Isolation, Intel Supervisor-mode Access Prevention.

F

1 INTRODUCTION

M EMORY-corruption attacks have been a major threat
to systems security in the past decades. To defend

against such attacks, researchers have proposed a variety
of defense mechanisms, such as control-flow integrity (CFI),
code-pointer integrity (CPI), and code (re-)randomization.
All these mechanisms require the effective intra-process
memory protection of the integrity and/or confidentiality
of sensitive data, such as the safe region in CPI and the
shadow stack in CFI, from potentially compromised code.
To efficiently protect sensitive data, researchers usually used
the information hiding (IH) technique which stores sensitive
data in a memory region allocated in a random address and
wishes that attackers could not know the random address
thus could not write or read the sensitive data. Unfortunately,
recent works showed that it is not secure anymore [1]–[5].
As such, even a robust IH-based defense can be defeated.

To address this problem, recent research instead opts
for practical memory isolation which provides efficient protec-
tion with a stronger security guarantee. Memory isolation
can be classified into address-based isolation and domain-
based isolation. Address-based isolation checks (e.g., bound-
check) each memory access from untrusted code to ensure
that it cannot access the sensitive data. The most efficient
address-based isolation is based on Intel Memory Protection
Extensions (MPX), which performs bound-checking with

• Chenggang Wu, Mengyao Xie, Zhe Wang, Xiaofeng Zhang, Yuanming
Lai, and Yan Kang are with Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China, and also with University of
Chinese Academy of Sciences, Beijing 100049, China.
Zhe Wang is the corresponding author (Email: wangzhe12@ict.ac.cn)

• Yinqian Zhang is with Southern University of Science and Technology,
Shenzhen 518055, China; Kangjie Lu is with Computer Science &
Engineering Department of the University of Minnesota-Twin Cities,
MN 55455, USA; Min Yang is with Fudan University, Shanghai 201203,
China. He is also a member of Shanghai Institute of Intelligent Electronics
& Systems, Shanghai Institute for Advanced Communication and Data
Science; Tao Li is with College of Cyber Science, Nankai University, Tianjin
300071, China.

hardware support [6]. Domain-based isolation instead stores
sensitive data in a protected memory region. The permission
to access this region is granted when requested by the trusted
code, and is revoked when the trusted access is finished.
However, memory accesses from untrusted code (i.e., the
potentially vulnerable code that can be compromised by
attackers) cannot enable the permission. The main source of
the overhead is enabling and disabling the memory-access
permissions. The most efficient domain-based isolation is to
use Intel Memory Protection Keys (MPK) [6]–[9].

In general, existing memory isolation incur non-trivial
performance overhead compared to the IH-based scheme.
For example, when protecting the shadow stack, the MPK-
based scheme incurs a runtime overhead of 61.18% [9].
When protecting the safe region of CPI using the MPX-
based scheme, the runtime overhead is 36.86% [10]. Both
cases are discouraging and would prevent practical uses of
the defense mechanisms. As such, we need a more efficient
isolation mechanism that can adapt to various workloads.

In this paper, we propose SMAP-Enabled Intra-process
Memory Isolation (SEIMI), a system for highly efficient and
secure domain-based memory isolation. SEIMI leverages
Supervisor-mode Access Prevention (SMAP), a widely used and
extremely efficient hardware feature for preventing kernel
code from accessing user space. SEIMI uses SMAP in a
completely different way. The key idea of SEIMI is to run
user code in the privileged mode (i.e., ring 0) and to store
sensitive data in the user space. SEIMI employs SMAP to
prevent memory accesses from the “privileged untrusted user
code” to the “user mode” sensitive data. SMAP is temporarily
disabled when the trusted code (also in the privileged mode)
accesses the sensitive data, and re-enabled when the trusted
code finishes the data access. Any memory access to the
user space will raise a processor exception when SMAP is
enabled. Since SMAP is controlled by the RFLAGS register
which is thread-private, disabling SMAP is only effective in
the current thread. Thus, temporarily enabling SMAP does

not allow any concurrent access to sensitive data from other
threads.

The new and “reverse” use of SMAP in SEIMI however
brings new design challenges: How to prevent the user code
in ring 0 from corrupting the kernel and abusing the privi-
leged hardware resources. To prevent kernel corruption, we
choose to use the hardware-assisted virtualization technique
(i.e., Intel VT-x) to run the kernel in the VMX root mode.
The user code instead runs in ring 0 of the VMX non-root
mode. Therefore, the user code is isolated from the kernel
by virtualization. To support untrusted code running in ring
0, we propose multiple novel techniques to prevent the user
code from abusing (1) privileged data structures (e.g., the
page tables) and (2) privileged instructions.

First, we store the privileged data structures in the VMX
root mode, and SEIMI forces all the privileged operations
to trigger VM exits. This way, the privileged data structures
will never be exposed to the user code. Second, we use
both automatic and manual approaches to comprehensively
identify privileged instructions and instruct SEIMI to san-
itize their execution in the VMX non-root mode through
three techniques: (i) triggering VM exits and stopping the
execution, (ii) invalidating the execution results, and (iii)
raising processor exceptions and disabling the execution.

We have implemented SEIMI on the Linux/X86_64 plat-
form. To evaluate and compare the performance overhead,
we deployed the MPX-based scheme, the MPK-based scheme,
and SEIMI to protect four defense mechanisms: O-CFI [11],
Shadow Stack [9], CPI [12], and ASLR-Guard [13]. We not
only conduct the experiments on SPEC CPU2006 and multi-
threaded Parsec-3.0 benchmarks, but also on 13 real-world
applications, including web servers, databases, JavaScript
engines, and the Chromium browser. Compared to the MPK-
based scheme, SEIMI is more efficient in almost all test
cases; while compared with the MPX-based scheme, SEIMI
achieves a lower performance overhead on average.

In sum, we make the following contributions.
• A novel domain-based isolation mechanism. We pro-

pose a novel memory isolation mechanism that cre-
atively uses SMAP in a reverse way; it can efficiently pro-
tect the sensitive data of memory-corruption defenses.

• New techniques for isolating user code. We identify
new security threats when running untrusted user code
in ring 0 and propose new solutions to these threats in
SEIMI. These techniques show that securely running
user code in a privileged mode can be practical.

• New technique for eliminating specific encoding in
binary. We propose a new method to eliminate the
arbitrary unintended domain-switching instruction with
low runtime overhead. It only eliminates the harmful
unintended instructions and transforms them in-place.

• New insights from implementation and evaluation.
We implement and evaluate SEIMI, and show that it
outperforms existing approaches. Our study suggests
that using SMAP for domain-based isolation is not only
practical but efficient.

2 BACKGROUND AND RELATED WORK

2.1 Intra-process Memory Isolation
Information hiding. Information hiding (IH) protects a
memory region by putting it in a randomized location. Since

the memory region is located in a small portion of the huge
address space, guessing the randomized address in a brute-
force way will likely cause crashes. IH has been widely used
in CFI [9], [11], code (re-)randomization [13]–[18], CPI [12],
and data-layout randomization [19], [20].
Intra-process Memory Isolation. Compared to IH, intra-
process memory isolation can provide a stronger security
guarantee in protecting the sensitive data used in the
defenses. We classify sensitive data into three categories.

• Confidentiality only. Some defenses, such as CCFIR [21],
O-CFI [11], Oxymoron [16], and Shuffler [15], grant read
permission to the defense code (i.e., trusted code) but
revoked from the untrusted code (i.e., application code). In
these mechanisms, sensitive data is the valid, randomized
target addresses of control transfers and should be stored
in read-only memory.

• Integrity only. Some defenses, such as CFI’s shadow
stack [9], CPI [12], and ReRanz [14], allow the sensitive
data to be read and written by the trusted code but read-
only by the untrusted code. In these mechanisms, the
sensitive data includes control data such as return address
and function pointer, which needs to be updated by the
defense mechanisms at runtime. However, as long as the
integrity is guaranteed, attackers cannot divert the control
flow, so the read permission can be granted to attackers.

• Both confidentiality and integrity. In defenses such as
TASR [18], StackArmor [20], Diehard [19], and ASLR-
Guard [13], the sensitive data holds secret information
such as randomized code addresses that requires runtime
update. As such, the untrusted code must be prevented
from reading and writing the sensitive data.

Memory isolation can be address-based or domain-
based. Address-based isolation sanitizes (e.g., bound-check)
addresses in memory read/write operations which can be
fairly frequent. As such, the sanitization efficiency is the key
to ensuring the performance of the isolation. Intel provides
MPX for efficient bound-checking, thus offering the most
efficient address-based isolation [6]. Domain-based isolation
protects sensitive data by temporarily disabling the access
restriction. There is multiple hardware that can control
the access restriction, including the virtual memory page
permission in MMU, the physical memory page permission
in EPT [22], and MPK [7], [8]. Among them, Intel MPK is the
most efficient one.

Additionally, some works mark the isolated memory
region as sensitive pages and only specific operations can
access these pages. The control-flow enforcement technology
(CET) [23] provides the isolation for the shadow stack by
marking it as the shadow stack page The shadow stack page
cannot be modified by normal memory write instructions.
Unfortunately, CET is tailored towards CFI and cannot be
easily repurposed for other mitigations [10]. IMIX [10] and
MicroStache [24] provide a similar but more generic method
for sensitive data, which requires modifying hardware.

2.2 Intel VT-x Extension

VT-x [25] is Intel’s virtualization extension to the x86 ISA. VT-
x splits the CPU into the VMX root mode (for running VMM)
and the VMX non-root mode (for running virtualized guest
OSes). Transitions between the VMX modes are facilitated

2

TABLE 1: Latency of instructions (measured 10 million times).
Instructions Cycles Description

VMCALL 541.7 Complete a hypercall (trigger a VM exit).
SYSCALL 95.2 Complete a system call (trap into the kernel).

POPFQ 22.4 Pop stack into the RFLAGS register.
WRPKRU 18.9 Update the access right of a pkey in MPK.
STAC/CLAC 8.6 Set/Clear the AC flag in the RFLAG register.

by VM control structure (VMCS), where the hardware auto-
matically saves and restores most architectural states. The
VMCS also contains a myriad of configuration parameters
that gives the VMM considerable flexibility in determining
which hardware to expose to the guest. Moreover, a guest can
manually trigger a VM exit through the VMCALL instruction.

2.3 SMAP in Processors
To prevent the kernel from inadvertently executing mali-
cious code in user-space (e.g., by dereferencing a corrupted
pointer), Intel and AMD provide the Supervisor-mode
Access Prevention (SMAP) hardware feature to disable
the kernel access to the user space memory [26]. In x86,
when the current privileged level (CPL) is less than 3, the
state is supervisor-mode (hereinafter referred to as S-mode),
and when the CPL is 3, the state is user-mode (hereinafter
referred to as U-mode). Meanwhile, the memory pages are
also divided into the supervisor-mode page (hereinafter
referred to as S-page) and the user-mode page (referred
to as U-page) based on the U/S bit in the page table entry.

When SMAP is disabled, the code in the S-mode can
access the U-page. When SMAP is enabled, the code in
the S-mode cannot access the U-page. Code in the S-mode
can enable/disable the access to U-pages by setting the AC
(Access Control) flag of the RFLAGS. The processor provides
two privileged instructions (executable only in ring 0), STAC
and CLAC, to set and clear the flag. In addition, when the
POPFQ instruction is executed in the S-mode (ring 0-2), the
AC flag can also be modified.

3 OVERVIEW

3.1 Threat Model
SEIMI shares a similar threat model as traditional memory-
corruption defense mechanisms. The goal of SEIMI is to
provide intra-process isolation for defense mechanisms
against memory-corruption attacks. The target programs
can be server programs (e.g., Nginx web server) or local
programs (e.g., browsers). We assume that the target pro-
grams may have the memory-corruption vulnerabilities that
could be exploited by adversaries to gain arbitrary read and
write capabilities. We also assume that the developers of
the programs are benign, so malware is out of the scope.
However, the target programs may allow local execution that
is in a contained environment. For instance, adversaries can
trick web users to click malicious URL links, and malicious
script code can run locally in a browser.

We assume that a memory-corruption defense (including
the IH-based defenses mentioned in §2.1) is secure. That is,
breaking SEIMI’s isolation is a prerequisite for compromis-
ing the defense mechanism. Since the defense mechanism
aims to prevent memory-corruption attacks, when SEIMI is
effective, adversaries cannot launch code-injection attacks
or code-reuse attacks (e.g., using unintended instructions)
to maliciously disable or enable SMAP. In other words, the

S S S S

S

UU

USupervisor-mode Page User-mode Page

Regular Memory Isolated Memory

S S
RWCode (RX)Heap (RW) Stack (RW)

Access Denied

Ring 0 U USMAP

Fig. 1: The memory layout of the process in ring 0 under SEIMI.

target defense mechanism and SEIMI protect each other. We
further assume that the target OS is secure and trusted.
3.2 High-Level Design
Because application code is intended to run in the user mode,
all existing intra-process memory isolation techniques utilize
only the hardware support available in this mode, such as
Intel MPK and MPX. In this paper, we turn our attention to
the privileged hardware feature—SMAP (see §2.3). As shown
in Table 1, switching SMAP (using STAC/CLAC instructions)
is much faster (8.6 vs. 18.9 CPU cycles) than switching MPK
(using WRPKRU instruction). Therefore, we conjecture that
domain-based isolation using SMAP would lead to better
performance, which motivates the development of SEIMI.

Fig. 1 shows the basic idea of SEIMI. The isolated
memory region is allocated in the U-pages, and the other
memory regions are set to be S-pages. The application runs in
ring 0 (because STAC/CLAC instructions can only run in this
ring level). SMAP is enabled by default. To access the isolated
memory, the trusted code temporarily disables SMAP by
executing STAC. When the access completes, the trusted code
executes CLAC to re-enable SMAP to prevent access from
untrusted code. Although this mechanism exposes a time
window in which SMAP is disabled, the window cannot be
exploited to launch the concurrent attacks (i.e., accessing the
isolated memory region from other threads). This is because
the disabling of SMAP is through the RFLAGS register which
is thread-private; it is effective in only the current thread.

But running untrusted code in ring 0 may corrupt the
kernel. To address this problem, SEIMI places the kernel in
“ring -1”. To this end, we adopt the Intel VT-x technique to
separate them, i.e., placing the process in the VMX non-root
mode (guest) and the kernel in the VMX root mode (host).

3.3 Key Challenges
Although running the user code in ring 0 of the VMX non-
root mode could realize the SMAP-based memory isolation
without corrupting the kernel, it still faces several challenges.
C-1: Distinguishing SMAP reads and writes. In some cases,
sensitive data may require integrity protection only; the
read restriction brings extra performance overhead. In some
other cases, the defense mechanisms would require sensitive
data to be readable but not writable to untrusted code.
These situations demand SEIMI distinguish read and write
operations. Unfortunately, SMAP cannot provide separated
read and write permissions.
C-2: Preventing leakage/manipulation of the privileged
data structures. In general, a guest VM needs to manage
its own memory, interrupts, exceptions, I/O, etc. Some
data structures are privileged, e.g., the page tables, and the
interrupt descriptor table (IDT). An attacker in ring 0 may
leak or manipulate these structures to gain a more powerful
ability, e.g., modifying the page table to disable the DEP.
C-3: Preventing abuses of the privileged hardware fea-
tures. When a process runs in ring 0, all privileged hardware

3

1

Target Process
VMX non-root, Ring 0

VMX root, Ring 0
SEIMI Kernel Module OS Kernel

User
Kernel

Other Process
VMX root, Ring 3

Fig. 2: The architecture overview of SEIMI.

features become available. Attackers may abuse privileged
instructions to launch powerful attacks. For example, attack-
ers use the MOV to %CR0 instruction to clear the WP bit to
gain the write permission to any non-writable pages.

3.4 Approach Overview
Separating read/write in SMAP. To address challenge C-1,
we propose SMAP read/write separation based on a shared-
memory method. When allocating the isolated memory
region for the sensitive data, we allocate two virtual memory
areas for the same physical memory region; one is configured
as U-pages that can be read and written (hereinafter referred
to as the isolated U-page region), and the other is set to be
S-pages that can only be read (hereinafter referred to as the
isolated S-page region). When the trusted code needs to modify
the sensitive data, it operates the isolated U-page region after
disabling SMAP. When it only needs to read the sensitive
data, it operates the isolated S-page region directly.
Protecting privileged data structures. To address challenge
C-2, we place the privileged data structures and their oper-
ations into the VMX root mode. In general, the operations
on these structures are only performed when the process
accesses the kernel through events such as system calls,
exceptions, and interrupts. We, therefore, leverage Intel VT-x
to intercept and force all these events to trigger VM exits, and
perform corresponding operations in the VMX root mode.
This way, the data structures stay only in the VMX root mode
and will not be exposed to the VMX non-root mode.
Preventing privileged instructions. The privileged hard-
ware features are all used through the privileged instructions.
To address challenge C-3, we comprehensively collect and
protect all the privileged instructions using multiple new
techniques. In particular, SEIMI sanitizes the execution of
all privileged instructions in the VMX non-root mode by
(i) triggering the VM exits and stopping the execution, (ii)
invalidating the execution results, and (iii) raising processor
exceptions and disabling the execution.

4 SECURELY EXECUTING USER CODE IN RING 0
Fig. 2 shows the architecture overview of SEIMI. The
core of SEIMI is a kernel module that manages VT-x. It
enables VT-x and places the kernel in the VMX root mode
when loaded. Processes using SEIMI run in ring 0 of the
VMX non-root mode so that they have direct access to
SMAP, while other processes run in ring 3 of the VMX root
mode. This arrangement is transparent to the kernel; SEIMI
automatically switches the VMX modes when the execution
returns from the kernel to the target process.

The SEIMI module includes three key components:
memory management, privileged-instruction prevention, and event
redirection. The memory management component is used
to configure the regular/isolated memory region in the
target process to realize the SMAP-based isolation (§4.1).
The privileged-instruction prevention component is used to

U
···
U

···
S

S

PML4
Host CR3

#0

#511
···

#256
#255

···

512G

U

1G

PDPT

U

2M

Page
Directory

U

4K

Page
Table

4KB
Page

S

···

U

NULL

PML4’

Guest CR3

#0

#511
···

#255

··· Super
visor-
Page

4KB Page

User-
Page

User-Mode EntryU Supervisor-Mode EntryS

Copy & Sync

• #0—#254 entries only
change the U/S bit.

• #256—#511 entries
only change the P bit.

U
···
U

···
S

S

#0

#511
···

#256
#255

···

512G

U

1G

… …

S
···

U

NULL

PML4’
#0

#511
···

#255
#254

···

#254 and #255 reference the same PDPT.

S

• The R/W bit of #255
entry is set to 1.

• The R/W bit of #254
entry is set to 0.

PML4 PDPT

(a) (b)

Host CR3

Guest CR3

Shared Memory

Fig. 3: The memory management in SEIMI.

prevent the privileged instructions from being abused by
attackers (§4.2). The event redirection component is used
to configure and intercept the VM exits that are triggered
when the process accesses the kernel through system calls,
interrupts, and exceptions. After intercepting these events,
it delivers the requests to the kernel for actual processing
(§4.3). The three components ensure the safe running of user
code in ring 0 and achieve SMAP-based memory isolation.
4.1 Memory Management
In contrast to traditional VMs, SEIMI does not have an OS
running in the guest that takes care of memory management.
Therefore, SEIMI has to help the guest manage its page table,
which, however, must satisfy the following requirements:
• R-1: Because the host kernel handles the system calls from

the guest, the memory layout of the user space should
remain the same in both guest and host page tables.

• R-2: The physical memory of the guest should be managed
by the host kernel directly.

• R-3: SEIMI should be able to flexibly configure the
U-page and S-page in the guest virtual memory space.

• R-4: The guest should not access the memory in the host.
A simple solution that satisfies the requirements is to

copy (to satisfy R-1 and R-2) the host page table of the user
space (to satisfy R-4) as the guest page table in the SEIMI
module. The guest page table contains the mapping from the
guest virtual address to the host physical address directly,
and changes the pages in the non-isolated memory space to
the S-page (satisfy R-3). Because the guest page tables are
allocated in the host kernel memory, and the kernel memory
is invisible in the guest page table, the guest page table will
not be exposed to attackers. However, since the page table is
a tree structure, and there are four levels in X86_64 (PML4,
PDPT, PD, PT), this solution has to copy the entire page
table, which is complicated and expensive when tracking all
updates of the host page table and synchronize them with
the guest page table.
A shadow mechanism for (only) page-table root. To reduce
the time and space cost, we propose an alternative solution
that reuses the last three-level page tables, and copies only
the first level page table, i.e., PML4. The PML4 page has
512 entries; each indexes 512GB of virtual memory space, so
the whole virtual address space is 256TB. Among them, the
first 256 entries point to the user space while the last 256
entries point to the kernel space. We copy the PML4 page of
the host page table to a new page, which we call the PML4’

4

TABLE 2: The privileged instructions and the instructions that
will change the behaviors in different rings in the 64-Bit mode
of X86_64.

Line Type Detailed Instructions Method

1
EX

IT
-T

yp
e

VM[RESUME/READ/WRITE/...], INVEPT, INVVPID
Unco.2 INVD, XSETBV

3 ENCLS (e.g, ECREATE, EADD, EINIT, EDBGRD...)

Cond.

4 RDMSR, WRMSR
5 IN, OUT, IN[S/SB/SW/SD], OUT[S/SB/SW/SD]
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
7 LGDT, LLDT, LTR, LIDT
8 MOV to/from DR0-DR7
9 MOV to/from CR3, MOV to/from CR8

10

IN
V

-T
yp

e

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

INV

11 MOV to/from CR2
12 SWAPGS
13 CLI, STI
14 LAR, LSL, VERR, VERW
15 POPF, POPFQ

16

EX
P-

Ty
pe

L[FS/GS/SS], MOV to [DS/ES/FS/GS/SS], POP [FS/GS]
#GP17 Far CALL, Far RET, Far JMP

18 IRET, IRETD, IRETQ

19 SYSEXIT, SYSRET #PF

20 XSAVES, XRSTORS, INVPCID #UD

page. In the PML4’ page, we clear the 256th~511th entries
(because the guest should not access the kernel pages), and
the 0th~255th entries of the PML4’ page have the same values
as their counterparts in the PML4 page.
Configuring the U-page and S-page. Each page table entry
has a U/S bit that indicates whether it is a user-mode entry
or a supervisor-mode entry. Given a virtual memory page, if
the corresponding entries in all levels of the page tables are
user-mode entries (U/S bit is 1), the page will be a U-page;
otherwise, if any entry is a supervisor-mode entry (U/S bit
is 0), the page will be an S-page. In the host page table,
all user-space pages are U-page. However, as SEIMI copies
the guest page table from the host page table, most page
table entries are identical. To configure S-pages in the guest
page table, SEIMI uses the memory management strategy
shown in Fig. 3(a). The 0th-254th entries of the PML4’ page
are modified to be supervisor-mode entries, which are used
for the non-isolated memory region. The 255th entry of the
PML4’ page is still a user-mode entry that is reserved for
the isolated memory region. In this way, SEIMI configures
the non-isolated memory region to be S-pages in the guest
page table; the region is still U-pages in the host page table.
Supporting the read-only isolated S-page region. To map
the same physical page as a read-only S-page and a read-
write U-page (as mentioned in §3.2), SEIMI first reserves the
254th entry in the PML4’ page, and let it reference the same
PDPT page that is referenced by the 255th entry. SEIMI then
sets the 254th entry as a supervisor-mode entry (shown in
Fig. 3(b)). Similar to the method of setting the S-page, SEIMI
flips the R/W bit to mark the page as read-only.

4.2 Intercepting Privileged Instructions
SEIMI must intercept all privileged instructions in ring 0 of
the VMX non-root mode and prevent them from accessing
privileged hardware features. Here we present how we
identify all privileged instructions and enable SEIMI to
intercept and invalidate them.
4.2.1 Identifying Privileged Instructions
The identification has two steps: (1) automated filtering of
privileged instructions and (2) manual verification. The goal

is to find instructions that are privileged or exhibit different
functionalities when running in ring 0 and ring 3. First, to
automatically filter privileged instructions, we embed each in-
struction with random operands into a test program and run
it in ring 3. By capturing the general protection exception and
the invalid opcode exception, we manage to automatically
and completely filter all privileged instructions. Such filtering
is conservative and will not have false negatives. Second,
we manually review the description of all X86 instructions
by reading the Intel Software Developers’ Manual [26] to
confirm that the instructions found in the first step are all
privileged instructions. We also identify instructions that
behave differently in ring 0 and ring 3.

We have identified 20 groups of instructions, as shown in
Table 2. Instructions in bold and italic (lines 14-17) behaves
differently in ring 0 and ring 3. All other instructions are priv-
ileged instructions. These instructions are further categorized
into three types according to how they are intercepted by
SEIMI: EXIT-Type (§4.2.2), INV-Type (§4.2.4), EXP-Type
(§4.2.3). Some of these handling mechanisms may employ
several methods for intercepting these instructions, which
are listed in the Method column.

For most privileged instructions, Intel VT-x provides the
support for monitoring their execution. SEIMI leverages this
support to capture them. For the other instructions, SEIMI
invalidates their execution condition that is required for their
correct execution. If there are multiple execution conditions
for one instruction, we choose the one which incurs a lower
performance overhead and does not affect other instructions.

4.2.2 Triggering VM Exit
Intel VT-x provides VMM with the ability to monitor be-
haviors in a VM. When the instructions of the EXIT-Type
(see Table 2) execute in the VMX non-root mode, they can
trigger the VM exit events and be captured by the VMM.
The VM exits are divided into unconditional exits (lines 1-2)
and conditional exits (lines 3-9). The conditional exit refers
to the triggering of VM exits depending on the configuration
of the control field in the VMCS. For example, the privileged
instructions in SGX (line 3) can be captured by the Intel
VT-x via configuring the ENCLS-exiting bitmap field in the
VMCS. To prevent such instructions from being executed in
ring 0, SEIMI explicitly configures the EXIT-Type privileged
instructions triggering VM exits to capture their execution.

4.2.3 Raising Exceptions

Raising #UD. For the instructions in line 20, we disable
the support of them in VMCS, so that the invalid opcode
exception (#UD) will be raised when executing them.
Raising #GP. For the instructions in lines 16-18, Intel VT-
x does not provide any support for interception. These
instructions are related to the segment operation, and their
execution changes the segment register. Since the application
runs in ring 0, attackers may switch to any segment, we also
need to control the execution of these instructions.

We observe that when changing a segment register, the
hardware uses the target selector to access the segment de-
scriptor table. During this process, if the segment descriptor
table is empty, the CPU raises a general protection exception
(#GP). Therefore, we can use this feature to capture these
instructions—emptying the descriptor table. However, there

5

LDT Descriptor
GDT

Base,Limit,Access
LDT

Base, Limit, AccessSelector
%ds:

mov %ds:(%rax), %rbx

Visible Part Hidden Part

mov to %ds

VMCS

Base, Limit, Access

CS/SS/DS...GS:
Guest

Selector

…
SYSEXIT/SYSRET

Base=0
Limit=FFFFH

Fixed Values:

… …

③

②

①
LDTRGDTR

Fig. 4: The segmentation-related handling in SEIMI.
are two problems: (1) how to ensure the normal execution of
a program with an empty segment descriptor table, which is
used in the addressing of every instruction; 2) how to ensure
the correct functionality of the segment related instructions
(lines 16-17) when the table is empty.

Segment-switching exception using descriptor cache: To ad-
dress these two problems, we use the segment descriptor
cache in X86. Each segment register has a visible part for
storing the segment selectors and a hidden part for storing
the segment descriptor information [27]. This hidden part is
also called the descriptor cache (as shown in Fig. 4). When
executing an instruction that does not switch the segment,
the hardware directly obtains the segment information from
the descriptor cache. Only when an instruction that switches
the segment is being executed, the hardware accesses the
segment descriptor table and loads the target segment infor-
mation into the descriptor cache (¬). Since X86 allows the
descriptor cache to be inconsistent with the descriptor table,
we can fill the correct segment descriptor information in the
descriptor cache and empty the segment descriptor table.
Specifically, we set the contents of all segment registers in
the guest-state field of the VMCS, including the selector and
the corresponding segment descriptor information. When
entering the VMX non-root mode, the information will be
directly loaded into the guest segment register (), and
we set the value of the base and limit fields in the GDTR
and LDTR registers to 0. This approach does not affect
normal execution of the instructions that do not switch
the segment, and cause the exception only for instructions
that switch the segment. When an exception is captured,
SEIMI checks whether the operation is legal1. If it is legal,
SEIMI performs the emulation for that instruction to fill the
requested segment information into the segment register in
the VMCS and returns to the VMX non-root mode.
Raising #PF. The SYSEXIT/SYSRET will switch the seg-
ment and directly fill the fixed value into the descriptor
cache (®) without accessing the segment descriptor table,
however. We observe that, although they do not raise the
#GP exception, no special handling is needed because their
execution will set CPL to 3 and run in ring 3, which prevents
instructions from being fetched from any S-page in ring 3.
Therefore, when the CPU executes the next instruction of
the SYSEXIT/SYSRET, the instruction fetch always raises a
page fault exception (#PF).

4.2.4 Invalidating the Execution Effects
For the INV-Type instructions, we instead invalidate their
execution effects, thus preventing attackers from using these
instructions to obtain information or change any kernel state.
CR*-related instructions. For the %CR0 and %CR4 control
registers–related load/store instructions (line 10), Intel VT-x
supports the configuration of VMCS to control the operation

1. The legal operation refers to the legal access that the program
should perform with the CPL=3, rather than running in ring 0.

of these instructions. The %CR0 and %CR4 registers in
the VMCS have a set of guest/host masks and read
shadows. Each bit in the guest/host mask indicates the
ownership of the corresponding bit in %CR0/%CR4—when
the bit is 0, the guest owns the bit, and the guest can read and
write the bit in the %CR0/%CR4; when the bit is 1, the host
owns the bit. In the latter case, when the guest reads the bit
in the %CR0/%CR4, the value of the corresponding bit is read
from the corresponding read shadows; when the guest
writes the bit, it does not write to the %CR0/%CR4. Based
on this feature, SEIMI sets all the bits of the guest/host
mask to 1, and all bits in the read shadows to 0. In this
way, the value of the %CR0/%CR4 read from the guest is all
0. Writing to these two registers does not modify the values
of the %CR0/%CR4. The %CR2 control register (line 11) is
used to store the fault address when a #PF occurs. Since
the exception in the guest directly triggers the VM exits, the
fault address is stored in the VMCS, and the %CR2 does not
record any fault address. An attacker could not reveal any
#PF information from this register, and thus modifying this
register has no effect.
SWAPGS, L[AR/SL], and VER[R/W]. The SWAPGS in-
struction (line 12) is used to quickly exchange the
base address stored in the %GS with the value in the
IA32_KERNEL_GS_BASE MSR register. SEIMI sets this MSR
register and the %GS segment base address to the same value,
so that the execution of this instruction has no effect. The LAR
and LSL instructions (line 14) are used to obtain the access
right and segment limit information from the corresponding
descriptor. The VERR and VERW instructions (line 14) are
used to verify a segment is readable and writable. Since the
descriptor table is set to empty, executing these instructions
will trigger a descriptor load segment violation, and the
RFLAG.ZF flag will be set to 0. SEIMI cannot emulate the
execution of these instructions, so the execution will be
ignored. Fortunately, these four instructions are very rarely
used in applications.
CLI/STI and POPF/POPFQ. While CLI/STI (line 13)
can modify the system flag, IF, recorded in RFLAGS,
POPF/POPFQ (line 15) instructions can additionally modify
IOPL and AC. The IF flag is used to mask the hardware
interrupts, and the IOPL is used to control the execution
conditions of the I/O-related instructions. In SEIMI, the
modification against IF and IOPL will not have any effect.
Both interrupts and I/O instructions trigger unconditional
VM exits. Even if an attacker modifies IF and IOPL, it will
not change any behavior in the interrupts or I/O. We next
describe how to protect AC which is used to control SMAP.
Eliminating the effects of POPFQ on AC. The POPFQ
instruction may also enable/disable SMAP by manipulating
the AC flag. Therefore, we need to make sure that either
the user code does not have such an instruction at all or it
cannot manipulate the AC flag. Since the POPFQ instruction
can be legitimately used for other purposes, we choose to
prevent them from manipulating the AC flag, i.e., insert a
CLAC instruction after each POPFQ to force enable the SMAP.
Overloading the AC flag. The AC flag in the RFLAGS register
is designed to enable/disable the alignment checking of
data accesses when used in the U-mode; it is re-purposed
for controlling SMAP when used in the S-mode. As such,

6

SEIMI cannot rely on the AC flag for alignment checking.
However, this does not limit the application of SEIMI,
because, for compatibility issues, such alignment checking is
actually disabled by default in both most Linux and Windows
applications. For example, the memcpy library function is
highly optimized by using unaligned data accesses in Glibc.

4.3 Redirecting and Delivering Kernel Handlers

System-call handling. The SYSCALL instruction, which is
used to complete a system call, cannot transfer the control
flow from the VMX non-root or root mode. To address this
problem, we choose to replace SYSCALL with VMCALL by
mapping a code page into the target memory space, which
contains two instructions: VMCALL and JMP *%RCX. We then
set the IA32_LSTAR MSR register in guest, which is used
to specify the entry of the system call, to the address of this
VMCALL. Once the process executes a SYSCALL, the control
flow will be transferred to execute this VMCALL instruction
to trigger a hypercall, and the address of the next instruction
of this SYSCALL will be stored into the %RCX register. The
SEIMI module vectors hypercalls through the kernel system
call table and calls the corresponding system call handler.
After the handler returns, the module executes VMRESUME to
return back to the VMX non-root mode and executes the JMP
instruction to jump to the next instruction of the SYSCALL.
Interrupts and exceptions handling. During the execution
of the target process, all interrupts and exceptions will
trigger the VM exits that should be handled in SEIMI. To
realize this, SEIMI configures VMCS, so that, when an inter-
rupt/exception occurs, the control flow will transfer to the
SEIMI module. Then, SEIMI vectors the interrupt/exception
through the interrupt descriptor table, performs the permis-
sion check of the target gate, and calls the corresponding
handler. Since the target process runs in ring 0, the U/S bit in
the error_code of the exception is 0 instead of 1. To ensure
that the exception can be handled correctly in the kernel, we
set the U/S bit to 1. After the handler returns, the module
executes the VMRESUME to return to the VMX non-root mode.
Linux signal handling. SEIMI naturally supports Linux
signals; it processes signals when the control flow is trans-
ferred to the VMX non-root mode from the VMX root mode.
Specifically, SEIMI checks the signal queue by calling the
signal_pending() function in the kernel before returning
to the VMX non-root mode. If a signal is in the queue, SEIMI
calls the do_signal() to save the interrupted context and
switches to the context of the signal handler. After that, it
sets the new context to the VCPU, and returns to the VMX
non-root mode to execute the handler. When the handler
returns, it will be trapped into the SEIMI module through the
sigreturn(). The module restores the previously saved
context to the VCPU, and returns to the VMX non-root mode.

5 IMPLEMENTATION
5.1 SEIMI APIs and Usage

Users can allocate and free a continuous isolated memory re-
gion by using void *sa_alloc(size_t length, bool
need_ro, long *offset) and bool sa_free(void

*addr, size_t length) that provided by a SEIMI’s
library. These two functions are implemented by invoking
the VMCALL instruction to pass the information to the SEIMI

1

SwitchTarget Process (un-intensive part)
VMX non-root, Ring 0 (GR0)

VMX root, Ring 0

SEIMI Kernel Module OS Kernel

User
Kernel

Target Process (intensive part)
VMX root, Ring 3 (HR3)

Fig. 5: Switching running state between GR0 and HR3.

module. If the argument need_ro is false, sa_alloc()
will only allocate an isolated U-page region, and return the
base address. If need_ro is true, it will also allocate an
isolated S-page region which is shared with the isolated U-
page region. The offset value from the isolated S-page region
to the isolated U-page region will be returned via argument
offset. Assuming that the address of sensitive data in the
isolated U-page region is addr, its address in the isolated
S-page region is addr+off. Therefore, the defense can read
the content of this sensitive data through addr+off, even if
SMAP is enabled. The program can use asm("stac\n") to
disable SMAP before accessing the isolated memory region
and use asm("clac\n") after accessing. Note that users
should load the kernel module of SEIMI and specify the
target application before running it.

5.2 The Start and Exit of the Target Process

Process start. Since all user applications in Linux start via
the execve() system call, the SEIMI module intercepts
execve and checks its parameters to monitor the start of
the target process. Upon the start of the target process, the
module first invokes the original handler of this system call
in the kernel to initialize the process, and then creates a
VCPU structure (i.e., VMCS) for this process and uses the
context of the target process to initialize this VCPU. VCPU
contains the initial context when the process is running in
ring 0 of the VMX non-root mode, where the %RIP stores
the entry of the target process, and the RPL fields of the
segment selector %CS and the %SS are set to 0 for running in
ring 0. Next, the module executes the VMLAUNCH instruction
to place the target process into ring 0 of the VMX non-root
mode.
Process exit. To monitor the exit of the target process, SEIMI
also intercepts the kernel API, do_group_exit(). Once the
exit event occurs, the module will force the target process to
exit and free the VCPU structure.
Supporting multi-threading. For multi-threaded and multi-
process applications, SEIMI also intercepts the clone()
system call to create and initialize a VCPU for the child
thread or process, and then places them into the VMX non-
root mode. The module also intercepts the kernel function
do_exit() to monitor the exit of the child thread or process.

6 OPTIMIZATION

As mentioned in §4.3, SEIMI replaces SYSCALL with
VMCALL, and VM exit is six times slower at least compared
to SYSCALL (see Table 1). Therefore, all system calls in SEIMI
are slower than the traditional execution environment in ring
3. For I/O-intensive applications, such as Nginx and Apache,
SEIMI may be a double-edged sword—the performance gain
on the isolation may be counteracted or even far less than
the cost of the handling of the system calls. That raises the

7

Kernel Stack

High

thread_info

execve()
vmlaunch()

ioctl() from GR0
······

······

(a) Kernel stack layout

②
GR0→HR3①

HR3→GR0

(b) Switch between GR0 and HR3
······

Kernel Stack
thread_info

ioctl() from HR3
vmlaunch()

ioctl() from GR0
······

······

······

Fig. 6: kernel stack layout during the running state switching.

question that whether SEIMI cannot completely be applied
to protect such applications with low cost.

But if we analyze such I/O-intensive applications, we
found that the execution path in them is not syscall-intensive
the whole time. That is, the executions of the syscall-intensive
code and the un-syscall-intensive code are interleaved. Based
on this observation, as shown in Fig. 5, we propose a method
to maximize the advantage of SEIMI by separating and
placing the syscall-intensive and the un-intensive parts in
ring 3 of the VMX root (hereinafter referred to as HR3) and
ring 0 of the VMX non-root (hereinafter referred to as GR0)
respectively. For the un-syscall-intensive code in GR0, we
use the SMAP to protect the isolated region, but the system
call is handled in a slow way (i.e., VMCALL); for the syscall-
intensive code in HR3, we protect the same isolated region
in a slow way (i.e., the MPK-based scheme), and the system
call is handled in the normal way (i.e., SYSCALL).

But there are two challenges: (1) How to switch the
running state of the target process between GR0 and HR3
seamlessly; (2) Only identifying the syscall-intensive and un-
intensive code regions is not enough, the domain-switching-
intensive code region need also to be considered. Only the
code regions that SEIMI performs better than MPK will be
placed in GR0, the left code region will be placed in HR3.

6.1 Switch between GR0 and HR3

6.1.1 The Interfaces for the Running State Switching

In SEIMI, we use ioctl() system call as the interface
of the running state switching requests: when switching
to HR3, we use the IOCTL_SWITCH_TO_HR3 argument
on the /dev/seimi device; when switching to GR0, we
use IOCTL_SWITCH_TO_GR0 argument. Note that when
invoking the ioctl() system call in GR0, SEIMI will
replace it with the VMCALL to trigger the VM exit. Through
the above interfaces, all switching requests will be delivered
to the SEIMI module. Then, SEIMI will be in charge of
the contextual synchronization between GR0 and HR3 and
return to the target running state finally.

6.1.2 The Method of the Running State Switching

The key to switching the running state between GR0 and
HR3 is to maintain contextual consistency, including the
user-mode context and the kernel-mode context. The user-
mode context includes the user-space memory and the
registers; The kernel-mode context refers to the kernel stack.
Synchronizing the user-mode context in SEIMI is very easy:
(1) Since SEIMI reuses the host page table as the guest page
table, the user space is the same in GR0 and HR3 natively;
(2) When the target process requests the switching and is
trapped into SEIMI, all registers will be stored into the VCPU
or the pt_regs in Linux kernel. SEIMI could synchronize
the registers between these two structures easily.

Unlike the user-mode context, synchronizing the kernel-
mode context (i.e., kernel stack) is challenging due to the
kernel stacks in the different running states being different.
Take the start of a process as an example, SEIMI intercepts
the execve() system call, initializes and launches the VCPU
in GR0. The current state of the kernel stack is the context
of launching the VCPU after intercepting the execve(). All
the handlings of VM exit in subsequent execution are on top
of these stack frames, e.g., the dispatching of the system-call
requests. As shown in Fig. 6 (a), when the process requests
the switching in GR0 and is trapped into the SEIMI module,
the top of the kernel stack is the context of handling the
ioctl() system call, but the bottom is still the context of
launching VCPU. Such kernel stack is unusable in HR3.

The kernel stack can be reused by adjusting a few frames.
The goal of adjusting is to make the kernel stack look
like the switching request is from the wanted/requested
running state. Fig. 6 (b) shows how SEIMI adjusts the kernel
stack When the process invokes ioctl() to switch to GR0,
SEIMI stores all registers (e.g., %rsp) to a switch_context
structure in the ioctl() firstly. And then, SEIMI launches
the VCPU in vmlaunch() function and enters into GR0 (¬);
When the process requests to switch to HR3, SEIMI restores
the switch_context structure and fallbacks the stack
frame to the context of the ioctl() that is called in HR3 ().
The stack frames fallback is very similar to setjmp() and
longjmp(). And then, SEIMI directly returns the control
flow to HR3 via the sysret operations in the ioctl().

The optimization method can also be applied to the signal-
intensive applications. If the signal handler is determined to
run in HR3 by the code partition method, SEIMI will transfer
the control flow to HR3 instead of GR0 directly when returns
to execute the signal handler. Note that the code partition
result about which handler needs to run in HR3 will be
passed to the SEIMI kernel module at the very beginning.

6.1.3 The Memory Isolation in the Different Running States
In the optimization of SEIMI, we use MPK to protect the
isolated region in HR3. MPK assigns a unique protection key
to a U-pages group and there are four bits in each PTE to
store its corresponding key value. The access right to each
memory page group can be updated via the un-privileged
wrpkru instruction. To leverage MPK in HR3, SEIMI sets the
regular and the isolated memory region to group numbers 0
and 1 respectively. Users can use the wrpkru to turn on/off
the access permissions to the isolated region in HR3. Since
MPK provides more fine-grained access control than SMAP
— supporting the read-only access permission, there is no
need to set the read-only isolated S-page region in HR3.

In SEIMI, the last three-level page tables are shared
between the host and the guest, the configuration of the
memory page groups is also the same. Since the isolated
regions are set to the U-pages in GR0, the wrpkru instruction
could also be used to restrict access permissions to this region.
Furthermore, MPK and SMAP are orthogonal for restricting
access to the U-page, and the access permissions check of
SMAP is earlier than MPK. For best isolation performance,
SEIMI only uses SMAP in GR0 and the access rights of MPK
to the isolated region are always turned on.
6.2 The Code Partitions

To identify code regions that need to be placed in HR3,

8

Code Transformation

.s file (v1) Binary
v1

.s file (v2) Binary
v2Assembly

Data Adjustment① ②
.c files

+

Binary
v3

Annotation

Assembly

Annotation
Iteration

Rewritten
Binary

Gadgets
Unusable
Analysis

Patch

③

④

New
section

bc files

.cpp files bc files
bc file

llvm
link

llc

Fig. 7: The workflow of eliminating unintended instructions.

we propose a profile-based method in SEIMI. Firstly, we
instrument the target application and the defense (with
the MPK-based isolation) to obtain the sequence of domain
switching and system call invoking events during runtime.
Secondly, determining ranges in the sequence that needs to
be placed in HR3; Thirdly, identifying the code regions that
need to be placed in HR3 via mapping the identified ranges
to the source code of the application.

We only place code regions that the MPK-based scheme
performs better than SEIMI in HR3. To estimate the overhead
of SEIMI and MPK in a range of the events sequence, we de-
fine two symbols Overheadsmap and Overheadmpk, which
are calculated as the additional overhead compared to the
baseline (the baseline does not enforce any protection). Thus
we did not calculate the overhead of syscall/sysret, which is
included in the baseline. For MPK, the overhead comes from
the switching events; and for SEIMI, the overhead mainly
comes from the switching events and the VM exit/entry
triggered by system call invoking events. In the formula, we
only considered the VM exits triggered by the system calls.
The interrupts and exceptions were not considered due to
the overhead introduced by system calls being much higher
than them in the I/O-intensive applications.

Overheadsmap = (Cycle∗ac ∗ 2) ∗Numberswitching

+ (Cyclevmcall ∗ 2) ∗Numbersyscall

Overheadmpk = (Cyclewrpkru ∗ 2) ∗Numberswitching

Cycle∗ac, Cyclewrpkru, and Cyclevmcall are CPU cycles
for executing STAC/CLAC, WRPKRU, and VMCALL instruc-
tions respectively. Numberswitching and Numbersyscall are
numbers of domain switching and system calls during the
execution, respectively. Given a range, when Overheadsmap

is greater than Overheadmpk (i.e., Numbersyscall reaches
1.9% of Numberswitching), the code region corresponding
to this range needs to be placed in HR3 and we call this
range the hot-range. For the adjacent hot-ranges, we merge
them into one hot-range. We find and combine such ranges
iteratively until all hot-ranges are un-changed. In this way,
we identify all code regions that need to be placed in HR3.

7 ISOLATION WITHOUT RELYING ON DEFENSES

Since the X86 and X86-64 ISA have variable length in-
structions, code alignment is critical: unintended/unexpected
instruction can be executed when alignment is broken. As
the threat model mentioned in §3.1, attackers cannot use the
unintended STAC/POPF via hijacking the control flow due
to the memory-corruption defenses. Since SEIMI must be
coupled with the defenses, it cannot provide secure isolation
independently that restricts its usage scenarios. In this
section, we introduce how SEIMI provides secure isolation
dependently under a stronger threat model — attackers could
launch the code reuse attacks, but the DEP mechanism still
needs to be deployed to prevent code injection attacks.

1

3a9d11110000 cmp bl,[rbp+0x1111]
00d8 add al, bl

3a9511110000 cmp dl,[rbp+0x1111]
00d0 add al, dl

(a) Register Reassignment (Mod R/M=0x9d)
010f add [rdi], ecx
01cb add ebx, ecx
89c8 mov eax, ecx

010f add [rdi], ecx
89c8 mov eax, ecx
01cb add ebx, ecx

e89d3f0000 call 0x40c5f0
……

(c) Gadgets Unusable Analysis (0x3f is the #UD instruction)

(b) Instruction Reorder
9d popf
3f (bad)

Fig. 8: Some examples of eliminating unintended instructions.

7.1 Problem Statement
Attackers could use unaligned/unintended STAC/POPF

to disable the SMAP and leak/tamper with the isolated
region. Existing solutions could eliminate all unintended
STAC/POPF instructions by using the static binary rewriting
technique [8], [28], [29] to replace them with multiple seman-
tically equivalent instructions or using hardware watchpoints
to monitor their execution [7]. But it is non-trivial to apply
existing techniques to eliminate unintended STAC/POPF in
SEIMI. This is because the encoding length of the POPF
is only 1 byte, the unintended POPF occurs everywhere in
code pages. Existing methods will introduce either huge
instrumented instructions or a lot of page fault exceptions,
which will incur a high performance overhead. So we need
a more generic method that eliminates the arbitrary length
encoding with a very slow runtime overhead.

7.2 Unintended Instructions Analysis
In SEIMI, POPF/STAC instructions can disable the SMAP.

The encoding of STAC is 0x0F01CB (3-bytes), and the encod-
ing of POPF is 0x9D (1-byte). Our goal is to eliminate these
encodings in all code pages except the intended STAC/POPF
instructions. We carefully reviewed all instruction encodings
in the Intel Software Developer’s Manual [26], and identified
the fields of the intended instruction that the encoding needs
to be eliminated may occur inside or across them:
• Prefix: An instruction may have a legacy prefix, REX prefix,

and VEX/XOP prefix (only specific for the VEX/XOP
instructions). Since each byte of the legacy/REX prefixs’
encodings is different from the encodings of STAC/POPF,
STAC/POPF cannot occur in these prefixes; Because there
are 1~2 bytes of the VEX/XOP prefix can be an arbitrary
value, STAC/POPF may occur in them. For example,
POPF occurs in the VEX prefix field of the vmovupd
ymm0,[rax] instruction (i.e., 0xC59D1000);

• Opcode: The encoding may occur in the opcode field of
an instruction. For example, POPF occurs in the SETGE
instruction’s opcode field (i.e., 0x0F9D);

• Mod R/M: The Mod R/M field is used to encode up
to two operands, each of which is a direct register or a
register addressing. The encoding may occur in this field.

9

TABLE 3: The instruction fields that the strategies could affect.
RefX/RefD represents the PC-relative displacement that refer-
ences the code/data segment; Const represents the constant
value; IntraF/InterF represents the offset field when the jump
target of the direct branch is inside/outside the current function.

Phase Strategy Prefix Opcode
Mod

SIB
Displacement

Imm.
Offset

R/M RefX RefD Const IntraF InterF

¬

RegReassign X X
InstReorder X X
BBReorder X X X
FuncReorder X X X

 DataReorder X

® GadgetsUA X X X X X X X X X X

¯ BinaryPatch X X X X X X X X X X

For example, POPF occurs in the CMP instruction’s Mod
R/M field in the left part of Fig. 8(a);

• SIB: The SIB field is used to encode the complex memory
addressing, i.e., the base+index*scale form. The encoding
may occur in this field. For example, POPF occurs in the
SIB field of the lea ecx,[rbx*4+4] instruction (i.e.,
0x8D0C9D04000000);

• Displacement: The Displacement field is used to add
an offset to the calculated memory address in the Mod
R/M and SIB fields. The encoding may occur in this field.
For example, POPF occurs as the partial of displacement
field of the cmp dl,[rbp+0x7b9d90] instruction (i.e.,
0x3A95909D7B00);

• Immediate: The encoding may occur in the immediate
field of an instruction. For example, POPF occurs in the
immediate field of the mov edi,0x9d instruction (i.e.,
0xBF9D000000);

• Offset: The offset is an alias to the immediate field when
an instruction’s opcode is the direct call/jmp instruction
and the conditional branch instructions. The encoding
may also occur in this field. For example, POPF occurs
in the immediate (offset) field of the call 0x13bd0
instruction (i.e., 0xE89DD70000);

7.2.1 Overview
Existing static binary rewriting methods introduce too

many instructions that incur high runtime overhead when
eliminating short-length encodings. So the core idea of our
work is straightforward transforming the code in place with-
out bloating the binary (i.e., introducing extra instructions).
For example, we could reassign registers to eliminate the
encoding that occurs in Mod R/M directly in Fig. 8 (a). It
will not incur any runtime overhead.

Fig. 7 shows the workflow of the elimination tool. It takes
the assembly file as input, and the output is the binary whose
unintended STAC/POPF instructions are eliminated. To map
the binary to the assembly file correctly in the subsequent
analysis, users need to use the llvm-link tool to merge all
bitcode files and generate one assembly file for a project.
Meanwhile, all relocations and symbols need to be reserved
to further promote mapping accuracy.

The elimination process is divided into four phases.
Phase-1 is the Code Transformation phase. The tool firstly
assembles the assembly file into the binary file (v1), and
uses IDA Pro [30] to find all intended instructions where
target unintended instruction occurs (including which field it
occurs in) by disassembling the binary file. Secondly, the tool
maps the binary to the assembly file, and marks (annotates)
the found intended instructions in the assembly file. Thirdly,

as shown in Table 3, the tool transforms the code in the as-
sembly file by using four strategies, which will be discussed
in the later subsections. Since the code transformation may
introduce a few new unintended instructions, this phase will
be iterated several times.

Phase-2 is the Data Adjustment phase. It takes the
assembly file in the last round of Phase-1 as input. The tool
adjusts the data layout to eliminate the unintended encodings
that occur in intended instructions’ displacement which
reference the data segment. Similar to Phase-1, it will not
bloat the data segment. The reasons why we do not bloat the
binary are: 1) incurring as low runtime overhead as possible;
2) bloating the binary could change the whole layout that
may introduce a mass of new unintended instructions and
the elimination method may not converge.

Phase-3 is the Gadgets Unusable Analysis phase. We
filter the unintended instructions left after the first two
phases instead of eliminating them. This is based on one
key observation that the instructions (the code gadget)
start from an unintended instruction must be usable for
attackers. The definition of an unusable gadget is that it must
cause the current thread/process crash, and the isolated memory
region cannot be written or read before crashing. If attackers
execute such gadgets, the crash will be raised. For example,
if the instruction behind the unintended instruction is an
undefined instruction, this gadget will crash the current
thread/process when it is executed. Therefore, no data in the
isolated memory region can be leaked or tampered with.

The last phase is the Binary Patch phase. For the left
unintended instructions, the tool uses a similar method
in ERIM [8] to replace them with several semantically
equivalent instructions to eliminate the encoding. In this
phase, we patch unintended instructions in the executable
file via attaching a new code section at the end of the file. The
patching method avoids changing the original layout of the
file, thus avoiding introducing new unintended instructions.

7.2.2 Phase-1: Code Transformation

In this phase, we eliminate the unintended instructions
by transforming the code in place without introducing extra
instructions. There are four strategies (shown in Table 3)
scheduled in order in this phase, i.e., RegReassign (short
for register assignment), InstReorder (short for instruction re-
order), BBReorder (short for basic block reorder), FuncReorder
(short for function reorder). The table also shows which fields
the strategy could be effective on. This phase is iterated
5 times to eliminate the newly introduced unintended
instructions in them. Next, we detail how they work.
Register reassignment. This strategy is used to eliminate
an unintended instruction that may occur in the Mod R/M
and SIB fields (shown in Table 3). Since these two fields
encode the register information into operands, replacing the
register in operands could eliminate the target encoding.
To ensure semantic consistency, we need to perform the
liveness analysis [31] on all registers in the function. A
register is live iff there is a path from a location to a use
of this register that does not go through a definition of this
register. And the live range of a register is defined as the set
of program points where this register is live. Hence, each
register may have many live ranges in a function. Based on
the calling convention of the System V ABI, we assume that

10

all parameter registers are live at the entry of a function. If
a live range of the register RA is not intersected with all
live ranges of the register RB, RA can be replaced with RB
across all the instructions located within this live range of
RA; Meanwhile, if two live ranges of RA and RB can be
extended to share the same boundary, RA and RB can be
swapped within the boundary. Using the above method, we
could eliminate some unintended instructions. For example,
as shown in Fig. 8, the unintended STAC that occurs in the
CMP can be eliminated by replacing %bl with %dl.

Instruction reorder. This strategy eliminates an unintended
instruction that may occur in the displacement (shown in
Table 3). If the memory operand is PC-relative addressing
(e.g., 0x12345678(%rip)), it encodes the offset to the target in-
struction. Therefore, reordering the instruction could change
its location that affects the encoding of the displacement.
In assembly files, the displacement field in the PC-relative
memory operand is a label that is defined at the target
location that it references. But for other types of memory
operands, it only stores the constant value, reordering the
instruction does not affect this value.

This strategy is performed within the basic block (BB)
while ensuring the BB’s size remains the same. It reorders the
instructions according to an alternative instruction schedul-
ing. To maintain code correctness, we first construct the
dependence graph of the BB where the unintended instruc-
tions exist. The dependence graph represents the instruction
interdependencies that constrain the possible instruction
schedules [32]. Secondly, we reorder the instructions by
swapping the instructions that do not have dependence.
Besides, this strategy can also eliminate the unintended
instructions across intended instructions. For example, as
shown in Fig. 8 (b), there is an unintended STAC occurs across
two intended instructions. Swapping the second instruction
with the third one eliminates the STAC.

Basic block reorder. This strategy eliminates an unintended
instruction that may occur in the offset field of the direct
jmp and conditional branch instructions (shown in Table 3).
If the location of the current basic block (BB) or the jump
target BB is changed, the offset field will be changed. Since
the function size should remain the same, not all BBs can
be swapped. This is because when we change the location
of a BB that there is fall-through control flow between its
preceded BB and itself or between itself and its succeeded
BB, the control flow needs to be rebuilt by inserting the JMP
instruction. Therefore, we only reorder the basic blocks that
the preceded BB and itself are ended with the JMP instruction.
If so, there are very few BBs that can be chosen. To resolve
this issue, we group some BBs to form a BBU (basic block
unit). When the preceded BBU and the current BBU are ended
with the JMP instruction, we reorder the BBUs. Meanwhile,
changing the location of a BBU also changes the location
of its internal instructions. So this strategy may be effective
in the displacement field. And the unintended instructions
across BBUs may also be eliminated.

Note that the size (can be 8-bit or 32-bit) of the offset field
is determined during the assembling phase. Since reordering
BBUs could change the relative offset of the direct branch
instructions, the size of the offset field could be changed
that may change the function size. But it is not a problem

since the compiler usually fills many NOP or unusable data
at the end of the function to ensure the function alignment.
Therefore, the change of the size of the offset field can be
counteracted by resizing this padding space.
Function reorder. This strategy eliminates an unintended
instruction that may occur in the offset of direct call instruc-
tions (see Table 3), and we only swap the adjacent functions.
Except for the functions that need to be swapped, the size
and the location of other functions remain unchanged. This
strategy could be effective in the displacement.
7.2.3 Phase-2: Data Adjustment

In this phase, we change the location of referenced
data/variables to eliminate the unintended instructions that
occur in displacement field. Our goal is not only to eliminate
the encoding in displacement field but also not to change the
locations of irrelevant data/variables as much as possible.
Our strategy is simply swapping two variables to change

their locations. If the referenced (target) variable does not
have an alignment requirement, we swap it with the variables
that also do not have an alignment requirement. They can
be the adjacent variables and the variables of the same size;
otherwise, we must swap them with variables of the same
size with the same alignment requirement.

Based on the above method, there may be many alter-
native variables for each target variable. We sort all these
variables by the number of references from the code to them.
We select the variable with the least reference first for swap-
ping. If new unintended instructions are introduced, we undo
this swapping operation and select the next variable with the
second least reference. Until the swapping operation does
not introduce new unintended instructions or the number
of attempts exceeds the threshold (5 times). If exceeding the
threshold, we will give up swapping for this target variable.
The reason we sort the variables by references is that the
encoding of the reference from the code to a variable can be
changed during changing this variable’s location which may
introduce new unintended instructions in the displacement
field. And the more references a variable has, the more likely
it is to introduce new unintended instructions.
7.2.4 Phase-3: Gadgets Unusable Analysis

As shown in Table 3, the first two phases cannot eliminate
unintended instructions that occur in some fields, and
the fields that they are effective on may not be handled
completely. Since some code gadgets cannot be used for
attackers, there is no need to eliminate them. Fig. 8(c) shows
an example, the succeeded instruction of the unintended
POPF is an undefined instruction, executing such gadget
causes the #UD exception. Phase-3 filters out the unintended
instruction whose corresponding gadget cannot be used.

To find the code gadget, we disassemble instructions on
the binary along with the control flow at the beginning of
each unintended instruction. The disassembly will be per-
formed on each branch when encountering the conditional
branch instructions. The disassembly stops on each path
when encountering (1) the indirect branch instructions or (2)
the number of instructions on this path exceeds the threshold
(i.e., 50). An unusable gadget must contain instructions that
cause the crash on each path, these instructions (we call
them the crash instruction) can be undefined instructions,
privileged instructions that can be captured by SEIMI (listed

11

TABLE 4: Lines of code in SEIMI

SEIMI kernel module 9,539 LoC C/ASM

Use SEIMI in OCFI 8 LoC C++
Use SEIMI in Shadow stack 8 LoC C++
Use SEIMI in CPI 30 LoC C++/ASM
Use SEIMI in ASLR-Guard 86 LoC C/ASM

Elimination tool 2,584 LoC Python/C++

in Table 2), and un-privileged instructions that can definitely
cause the exception/interrupt (e.g., int 0x80 and accessing
the NULL address). Based on this method, we filter out
some possible unusable gadgets and cut off the subsequent
instructions of the first crash instruction within gadgets.

To determine whether the above-filtered gadgets are
unusable, we need to identify if the instructions that before
the crash instruction in a gadget cannot read/write the
isolated memory region. We use the angr [33] framework to
perform the symbolic execution on each gadget. The input
of each gadget are all registers and the memory content,
they are symbolized. We collect the addresses (the symbolic
expression) of all memory access operations in each gadget.
And then we infer these addresses must be less than the
lowest address (the constant value mentioned in §4.1) of the
isolated memory region by using the Z3 [34] solver. If there
is no instruction that accesses the isolated region before the
crash instruction in a gadget, it is an unusable gadget and
we ignore its corresponding unintended instruction.

Last but not the least, some applications usually regis-
ter signal handlers to handle the occasional exception by
themselves to avoid the crash. Since the unusable gadgets
can disable the SMAP before causing the crash, the access
permission to the isolated memory region is open in the
signal handlers. To address this issue, the SEIMI kernel
module enables the SMAP by force before transferring the
control flow to user-defined signal handlers. Similarly, the
clone-probing attacks [35] are useless due to the SMAP is
enabled by default when a new process/thread is created.
7.2.5 Phase-4: Binary Patch

For the left unintended instructions, we adopt the similar
method proposed in ERIM [8] by replacing the intended
instructions where unintended instructions occur with se-
mantically equivalent instructions. In order not to bloat
the code segment, we use the binary patching method by
introducing a new code section that holds the semantically
equivalent instructions (the patched code) and inserting a
JMP instruction at the original location to transfer the control
flow to the patched code. As shown in Table 3, the elimination
ability of this method is powerful, and it can eliminate any
unintended instruction that occurs in any instruction field.
7.3 Discussion

The binary patch method in the last phase needs to insert
trampolines (similar to ERIM [8]) to transfer the control flow.
These trampolines could incur extra performance overhead.
But the overhead can be avoided by replacing instructions
inline. Since the length of the instructions before the patch
is less than the length of the patched code, this can cause
the code bloat and new unintended instructions may be
introduced. To resolve this issue, we need to eliminate them
through the processing in the whole phases again.

Our techniques can also be applied to handle the bi-
nary. But it relies on high-accuracy disassembly, function

TABLE 5: lmbench benchmark timings (in µs); smaller is better.

Config
null null signal signal fork exec Mmap Prot Page
call I/O install handle proc proc 16p/64K Latency Fautl Fault

Native 0.21 0.26 0.27 0.99 355 870 12.6 6779 0.636 0.1539
SEIMI 0.71 0.82 0.79 3.02 463 1029 15.9 12500 1.038 0.2128

Slowdown 2.4X 2.2X 1.9X 2.1X 30.4% 18.3% 26.2% 84.4% 63.2% 33.6%

recognition, and other binary analysis techniques. For the
dynamically generated code by the JIT compilers, such as
JavaScript engines, we need to integrate our techniques in
the backend of such compilers to eliminate the unintended
instructions in the code cache and leave it as the future work.

8 EVALUATION

In §4 and §5, we have identified and addressed the security
threats of placing the user code in a privileged mode. Since
SEIMI does not introduce new security problems, we focus
on the performance evaluation of SEIMI. We implemented
SEIMI on Ubuntu 18.04 (Kernel 4.20.3) that runs on a 2.10
GHz Intel(R) Xeon(R) Gold 6130 CPU and an integrated
Matrox G200eW3 Graphics Controller (rev 04) with 32 cores
and 32GB RAM. Table 4 shows the lines of code in SEIMI.
Defenses Configuration. We adopted four IH-based de-
fenses, OCFI [11], ShadowStack (SS for short) [9], CPI [12],
and ASLR-Guard (AG for short) [13], and applied SEIMI to
protect their secret data, i.e., OCFI’s BLT, SS’s shadow stack,
CPI’s safe region, and AG’s safe-vault. We also implemented
the MPX-based and the MPK-based schemes for these
defenses. For SS, we adopted the compact register scheme [9]
and reserved the %R15 register in LLVM and Glibc library.
For CPI, we used the optimized version of ERIM [8].
Microbenchmarks. Compared with the MPX/MPK-based
schemes, SEIMI requires all kernel accesses trigger VM exits.
We used lmbench [36] (v.3.0-a9) to measure the overhead
imposed by SEIMI on basic kernel operations. To avoid mix-
ing the overhead of domain-switching, we ran lmbench on
SEIMI to only evaluate the overhead on kernel operations.
Macrobenchmarks. we ran SPEC CPU2006 benchmarks
with ref input and multi-threaded Parsec-3.0 using native
input with 4 threads. Four defenses, OCFI, SS, CPI, and AG
are used to protect each benchmark. For each combination
of benchmark and defense, we conducted experiments for
four cases: (1) protected only by the IH-based defense, (2)
protected by the MPX-based defenses, (3) protected by the
MPK-based defenses, and (4) protected by the SEIMI-based
defenses. The baseline does not enforce any protection.
Real-world applications. We evaluated SEIMI on 13
popular applications used in desktop and server. They
fall in four categories: web servers, databases, JavaScript
engines, and browsers. For web servers, we use Nginx-
1.4.0, Apache-2.4.38, Lighttpd-1.4, and Openlitespeed-1.4.51.
For databases, we use MySQL-5.5.14, SQLite-3.7.5, Redis-
3.2.6, and Memcached-1.5.10. For Javascript engines, we use
ChakraCore (release-1.11), V8 (release-8.0), JavaScriptCore
(v.251703), and SpiderMonkey (v.59.0a1.0). For browsers, we
use Chromium (69.0.3497.3). We also conduct experiments
with the four defenses and four protection cases.

For experiments in microbenchmarks (§8.1), macrobench-
marks (§8.2), and real-world applications (§8.3), we evaluated
SEIMI without the optimization. That is, all benchmarks ran
in ring 0 of the VMX non-root mode. In §8.4, we evaluated the

12

-10%

10%

30%

50%

70%

90%
ORIG MPX
MPK SEIMI

(c) CPI

-10%
40%
90%

140%
190%
240%
290%
340%
390%

R
un

tim
e

O
ve

rh
ea

d
ORIG MPX
MPK SEIMI

(a) OCFI

-10%

40%

90%

140%

190%

R
un

tim
e

O
ve

rh
ea

d ORIG MPX
MPK SEIMI

(b) SS (d) AG

135%
210%
285%
360%
435%
510%
585%

135%

210%

285%

120%

200%

280%

360%
IH

IH

IH

-5%
0%
5%

10%
15%
20%
25%
30%

ORIG MPX
MPK SEIMI
IH

Fig. 9: Performance overhead on the SPEC benchmarks incurred by defenses when using IH/MPX/MPK/SEIMI to protect their
sensitive data. All overheads are normalized to the unprotected benchmarks. Some benchmarks are missing, because the defenses
failed to compile or run.

0%
100%
200%
300%

blacksch
oles

bodytrack ferr
et

fluidanimate
freq

mine

swaptions vips
x264

dedup

stre
amcluster

Geomean

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

IH MPX MPK SEIMI(a) OCFI

0%
100%
200%
300%

blacksch
oles

bodytrack ferr
et

fluidanimate
freq

mine

swaptions vips
x264

dedup

stre
amcluster

Geomean

IH MPX MPK SEIMI(b) SS

0%

100%

200%

300%

blacksch
oles

fluidanimate
freq

mine

stre
amcluster

Geomean

IH MPX
MPK SEIMI

(c)
CPI

0%
50%

100%
150%
200%
250%

3D
Acce

ss
Bitops

Controlflo
w
Crypto

Date Math
Regexp

Strin
g

Geomean

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

IH MPX MPK SEIMI(a) OCFI

0%
50%

100%
150%
200%
250%

3D
Acce

ss
Bitops

Controlflo
w
Crypto

Date Math
Regexp

Strin
g

Geomean
Pe

rf
or

m
an

ce
 o

ve
rh

ea
d

IH MPX
MPK SEIMI

(b) SS

0%
50%

100%
150%
200%
250%

3D
Acce

ss
Bitops

Controlflo
w
Crypto

Date Math
Regexp

Strin
g

Geomean

IH MPX
MPK SEIMI

(b) SS

Fig. 10: Performance overhead on Parsec incurred by defenses when using IH/MPX/MPK/SEIMI to protect their sensitive data.

impact of the optimization on SEIMI. In §8.5, we evaluated
our elimination tool to eliminate two unintended instructions
STAC/POPF. All applications were compiled with the default
configuration without any protection, including the defense
and the isolation schemes. They ran in the normal user mode
and the virtualization is not enabled.

8.1 Microbenchmarks Evaluation

Table 5 shows the test results for process-related latency,
context switching latency, and file & VM-related latency
reported by lmbench. As for process-related latency, the
results show that SEIMI incurs significant overhead in
handling lightweight system calls and signals (bold font
in the table). This is in fact expected—the lightweight system
call tests (such as null call) are mainly used to test the
latency of trapping user-space programs into the kernel. For
example, null call only calls getppid() which involves
very little kernel operation in a loop. In contrast, hypercalls
are more expensive than system calls (as shown in Table 1).
As a result, system calls with simple kernel operations tend to
have higher performance overheads with SEIMI. For signals,
SEIMI performs extra operations on saving and restoring
the interrupted context, thus incurring higher performance
overhead. We started 146 processes to evaluate the process
creation (e.g., fork() and exec()). Moreover, Table 5 shows
the latency of context switch with 16 processes and 64K
working set via pipe-based token passing. Context switch
time is defined here as the time needed to save the state
of one process and restore the state of another process. The
overhead of SEIMI is 26.2%. As for file & VM-related latency,
the geomean overhead of file mappings, protection fault, and
page fault is 56.38%. The protection fault and page fault tests
reflect the overhead incurred by SEIMI on the exception
handling via triggering the more expensive VM exits.

8.2 Macrobenchmarks Evaluation

8.2.1 SPEC CPU2006 benchmarks
Fig. 9 shows the performance overhead of four defenses
with different isolation schemes. The geometric mean of
performance overheads incurred by OCFI, SS, CPI, and AG
with the IH-based scheme are 5.19%, 3.33%, 3.44%, and 0.98%,
respectively. To better compare SEIMI with MPK/MPX,
we define Overheadscheme as the overhead incurred by a
defense with a specific isolation scheme. We also define ∆pk

(=Overheadmpk −Overheadseimi) as the relative overhead
between MPK and SEIMI; ∆px is the relative overhead
between MPX and SEIMI.

OCFI. As shown in Fig. 9(a), when using MPX, MPK, and
SEIMI to protect OCFI, the performance overheads are
26.63%, 34.83%, and 18.29%. Compared to MPK, SEIMI is
faster in all 19 cases, and the range of ∆pk is [0.08%, 231.03%].
Compared to MPX, SEIMI is faster in nine cases. For these
nine cases, the range of ∆px is [2.13%, 143.37%]; for the
remaining cases, the range of ∆px is [-281.99%, -14.94%].

SS. As shown in Fig. 9(b), when using MPX, MPK, and
SEIMI to protect SS, the performance overhead are 14.57%,
21.08%, and 12.49%, respectively. Compared to MPK, SEIMI
is faster in all cases, and the range of ∆pk is [0.27%, 90.5%].
Compared to MPX, SEIMI is faster on eight cases. For these
eight cases, the range of ∆px is [1.04%, 98.39%]; for the
remaining cases, the range of ∆px is [-110.84%, -7.96%].

CPI. As shown in Fig. 9(c), when using MPX, MPK, and
SEIMI to protect CPI, the performance overhead are 6.20%,
6.11%, and 4.15%, respectively. Compared to MPK, SEIMI
is faster in all cases except 447.dealII, 462.libquantum, and
473.astar (∆pk is -1.64%, -5.26%, and -1.07%). This is because
these cases have more frequent VM exits than others. For

13

TABLE 6: Performance overhead on real world applications incurred by four defenses when using IH/MPX/MPK/SEIMI to
protect their sensitive data. All overheads are normalized to the unprotected applications. “—” represents the defense failed to
compile or run it.

Applications
OCFI SS CPI AG

IH MPX MPK SEIMI IH MPX MPK SEIMI IH MPX MPK SEIMI IH MPX MPK SEIMI

Nginx 1.10% 3.86% 5.32% 1.77% 1.86% 7.33% 10.49% 2.43% 0.90% 6.38% 8.95% 3.08% 0.74% 7.60% 5.27% 2.01%
Apache 1.58% 4.71% 2.82% 1.82% 1.64% 6.36% 6.83% 2.15% 1.45% 5.01% 2.58% 1.80% — — — —
Lighttpd 2.94% 3.42% 5.74% 4.46% 2.77% 6.85% 6.33% 3.78% 1.70% 6.83% 3.42% 2.46% — — — —
Openlitespeed 1.44% 5.39% 3.88% 1.61% 1.04% 1.92% 3.39% 1.42% 0.91% 2.89% 2.99% 1.38% — — — —

MySQL 1.75% 12.09% 8.08% 3.79% 3.17% 9.60% 11.99% 3.94% — — — — — — — —
SQLite 1.61% 2.11% 2.70% 1.84% 1.42% 3.46% 2.19% 1.94% 1.36% 3.11% 2.66% 2.18% — — — —
Redis 4.51% 5.46% 13.12% 10.31% 1.18% 2.81% 5.36% 5.06% 1.24% 4.47% 4.81% 3.93% — — — —
Memcached 1.64% 6.64% 7.46% 2.74% 2.38% 5.57% 8.13% 3.44% 1.04% 6.02% 7.28% 1.60% — — — —

ChakraCore 3.03% 12.09% 9.90% 4.10% 4.37% 7.92% 10.09% 5.15% — — — — — — — —
V8 2.57% 11.63% 5.04% 3.37% 2.05% 8.01% 4.05% 2.96% — — — — — — — —
JavaScriptCore 2.22% 22.87% 39.65% 26.81% 20.69% 38.34% 47.77% 31.82% — — — — — — — —
SpiderMonkey 1.75% 9.32% 7.63% 4.15% 1.84% 7.56% 7.79% 5.19% — — — — — — — —

other cases, the range of ∆pk is [0.01%, 100.93%]. Compared
to MPX, SEIMI is faster on ten cases (10/17). For these ten
cases, the range of ∆px is [0.48%, 17.88%]; for the remaining
cases, the range of ∆px is [-121.86%, -0.7%].

AG. As shown in Fig. 9(d), when using MPX, MPK, and
SEIMI to protect AG, the performance overhead are 10.35%,
2.14%, and 1.04%, respectively. 433.milc (∆pk=-1.25%) is the
only case where MPK is faster than SEIMI, which is also
due to more frequent VM exits. For the remaining cases, the
range of ∆pk is [0.01%, 11.34%]. Compared to MPX, SEIMI
is faster in all cases except 473.astar (∆px=-13.38%). For the
remaining cases, the range of ∆px is [2.28%, 28.27%].

Performance Analysis. On average, the overhead of SEIMI
is much less than MPX and MPK-based schemes. However,
in some cases, MPX may outperform SEIMI. The overhead
incurred by the address and domain-based scheme mainly
comes from the bound-checking and the access permission
switching, respectively. Therefore, which performs better
depends on the protection workloads. We define CFreq
and SFreq as the number of bound-checks and permission
switches per millisecond, respectively. SEIMI outperforms
MPX in 56.92% of benchmarks. As the CFreq/SFreq increases,
the overhead of MPX increases; when it is larger than 51.88,
86.21% of benchmarks have a lower overhead with SEIMI.

8.2.2 Parsec-3.0 benchmarks

Fig. 10 shows the performance overhead of OCFI/SS/CPI
with different isolation schemes. We did not choose AG
here is due to it is failed to compile all cases. OCFI and
SS are failed to compile raytrace, and to run facesim and
canneal. CPI can only compile and run correctly 4 cases.
When using IH, MPX, MPK, and SEIMI to protect OCFI,
the performance overheads are 2.87%, 22.63%, 28.61%, and
19.55%, respectively; when using IH, MPX, MPK and SEIMI
to protect SS, the performance overheads are 5.73%, 25.83%,
27.73%, and 18.35%, respectively; and when using IH, MPX,
MPK, and SEIMI to protect CPI, the performance overheads
are 8.87%, 40.73%, 32.53%, and 25.46%, respectively. We can
see that SEIMI is more performant than MPX and MPK.
8.3 Real-world Applications Evaluation

8.3.1 Web servers

We used ApacheBench (ab) to simulate 10 concurrent clients
constantly sending 10,000 requests; each request asks the
server to transfer a file remotely (over a 5m long CAT 5e
cable). We vary the size of the requested file ({1K, 5K, 20K,
100K, 200K, 500K}) to represent different configurations. In

our experiments, Nginx started 4 worker processes; Apache
started 4 daemon processes, each with 27 threads; Lighttpd
started only one process; Openlitespeed started 8 processes.
Table 6 shows the performance overhead (geo_mean) of

web servers under the protection of the four defenses with
IH/MPX/MPK/SEIMI-based schemes. As the requested file
size increases, the overheads of all schemes decline. From the
table, we can see that SEIMI is slower than MPX only when
protecting Lighttpd with OCFI (in bold in Table 6). For all
other cases, SEIMI is more performant than MPX and MPK.
8.3.2 Databases
Since different databases have different benchmarks, we
evaluated them by using the corresponding benchmarks
which are consistent with prior works: (1) For MySQL, we
evaluated its latency with the sysbench utility [37]. MySQL
was configured with 4 tables of 100,000 rows on which a
read-write workload was executed with 4 threads; (2) Redis
started 2 processes, one of which has 3 threads. We evaluated
its SET and GET throughput with the redis-benchmark tool,
which is released together with Redis; (3) For Memcached,
we evaluated it with twemperf [38], and it started 1 process
with 10 threads. We created 1,000 connections and 10 calls
per second, and the item size is set to 400 KBytes; (4) In our
experiments, SQLite started one process, and we evaluated
its latency by inserting 2,000 rows and selecting 2,000 times.
From the table, we can see that SEIMI is slower than MPX
only when protecting Redis with OCFI and SS, which is in
bold in Table 6. For all other cases, SEIMI is more performant
than MPX/MPK on average.
8.3.3 JS engines
We evaluated the JS engines with the Kraken benchmark [39]
from Mozilla, which is widely used to test realistic workloads.
ChakraCore, V8, JavaScriptCore, and Spidermonkey are all
multi-threaded programs, 4 threads, 9 threads, 2 threads, and
13 threads are enabled respectively. We evaluated each of the
14 test suites in Kraken and calculated the geo_mean of the
overheads. From the table, we can see that SEIMI is more
performant than MPX/MPK in most cases (except protect-
ing JavaScriptCore with OCFI). Moreover, neither address-
based schemes nor domain-based schemes are suitable for
JavaScriptCore due to the significant performance overhead.

8.3.4 Chromium browser
We ran Chromium with 6 processes and 68 threads,

and evaluated it with SunSpider JavaScript benchmark [40],
Octane benchmark [41], and CanvasMark benchmark [42].

14

0%
50%

100%
150%
200%
250%

3D
Acce

ss
Bitops

Controlflo
w
Crypto

Date Math
Regexp

Strin
g

Geomean

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d
IH MPX MPK SEIMI(a) OCFI

0%
50%

100%
150%
200%
250%

3D
Acce

ss
Bitops

Controlflo
w
Crypto

Date Math
Regexp

Strin
g

Geomean

IH MPX
MPK SEIMI

(b) SS

0%
20%
40%
60%
80%

Rich
ard

s
Delt

ab
ule

Cryp
to

Ray
tra

ce
Earl

ey
-bo

ye
r

Reg
ex

p
Spla

y

Nav
ier

-st
ok

es
Pdfj

s
M

an
dre

el
Gbe

mu
Cod

e-l
oa

d
Box

2d
GEOMEAN

IH MPX
MPK SEIMI (c) OCFI

0%
25%
50%
75%

100%

Rich
ard

s
Delt

ab
ule

Cryp
to

Ray
tra

ce
Earl

ey
-bo

ye
r

Reg
ex

p
Spla

y

Nav
ier

-st
ok

es
Pdfj

s
M

an
dre

el
Gbe

mu
Cod

e-l
oa

d
Box

2d
GEOMEAN

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

IH MPX
MPK SEIMI (d) SS

0%
20%
40%
60%
80%

100%

Aster
oids1

Aster
oids2

Aster
oids3

Aster
oids4

Aren
a5
Plasm

a

3D Renderin
g

Pixel b
lur

Geomean

IH MPX
MPK SEIMI

(e) OCFI

0%
50%

100%
150%
200%

Aster
oids1

Aster
oids2

Aster
oids3

Aster
oids4

Aren
a5
Plasm

a

3D Renderin
g

Pixel b
lur

Geomean

IH MPX
MPK SEIMI

(f) SS

Fig. 11: Performance overhead on Chromium with SunSpider/Octane/Canvasmark tests incurred by OCFI/SS when using
IH/MPX/MPK/SEIMI to protect their sensitive data.

Since CPI and AG are failed to compile or run Chromium,
we only evaluate OCFI and SS here.

JavaScript Test. Chromium browser was evaluated using
Apple’s SunSpider JavaScript benchmark [40]. The bench-
mark covers 9 aspects of JavaScript performance. Fig. 11 (a)
and (b) show the performance overhead of OCFI/SS with
different isolation schemes. When using IH, MPX, MPK, and
SEIMI to protect OCFI, the performance overheads are 5.34%,
25.48%, 104.25%, and 67.22%, respectively; when using IH,
MPX, MPK, and SEIMI to protect SS, the performance over-
heads are 45.29%, 62.24%, 114.49%, and 89.36%, respectively.
It can be seen that SEIMI is more performant than MPK, but
has a higher overhead than MPX.

Just-in-time Test. We evaluated Just-in-time (JIT) with the
Octane benchmark [41], which is the JIT-heavy benchmark at
runtime. Each JavaScript program in the benchmark was
executed 30 times, and we calculated the average score.
Fig. 11 (c) and (d) show the performance overhead of
OCFI/SS with different isolation schemes. When using IH,
MPX, MPK, and SEIMI to protect OCFI, the performance
overheads are 1.73%, 7.39%, 16.62%, and 11.68%, respectively;
when using IH, MPX, MPK, and SEIMI to protect SS, the
performance overheads are 5.04%, 10.92%, 16.87%, and
13.44%, respectively. It can be seen that SEIMI is more
performant than MPK, but has a higher overhead than MPX.

GPU acceleration Test. We evaluated the Chromium with
CanvasMark benchmark [42], which is a tool for HTML5
canvas 2D rendering and JavaScript performance testing, and
enabled the use hardware acceleration when available to turn
on hardware acceleration. Each test in the benchmark was
executed 3 times, and we calculate the average score. Fig. 11
(e) and (f) show the overhead of OCFI/SS with different
isolation schemes. When using IH, MPX, MPK, and SEIMI to
protect OCFI, the performance overheads are 5.26%, 17.25%,
20.65%, and 14.26%, respectively; when using IH, MPX, MPK,
and SEIMI to protect SS, the performance overheads are
8.73%, 21.83%, 21.85%, and 16.56%, respectively. It can be
seen that SEIMI is more performant than MPX and MPK.

For Chromium, MPX-based isolation outperforms SEIMI
in the SunSpider [40] and Octane [41] benchmarks. For V8,
as shown in Table 6, SEIMI outperforms MPX and MPK in
Kraken [39]. This is because the behavior of the Chromium
is more complex than V8, and more CALLs/RETs need to

Fig. 12: Thousand syscalls per second of real-world applications.

TABLE 7: The statistical data on lmbench and web servers.

Applications LoCmpk

LoC

Switchingmpk

Switching
SyscallsHR3

Syscalls

Null call 11.85% 61.21% 99.99%
Null I/O 11.94% 61.73% 99.99%
Signal install 12.13% 63.47% 99.99%
Signal handler 12.85% 64.58% 99.99%

Nginx 2.28% 10.34% 26.04%
Apache 1.87% 13.48% 27.89%
Lighttpd 3.18% 11.65% 24.97%
Openlitespeed 2.11% 10.73% 24.26%

be protected by OCFI and SS, which leads to more frequent
permission switching and higher overhead of SEIMI.

Additionally, since MPX restricts each memory access
(i.e., bound-check) to ensure that untrusted code cannot
access the isolated memory region, the huge amount of
instruction instrumentation could cause severe code bloat [9].
In Chromium, the code bloat of MPX is 51.75% on average,
while the code bloat of SEIMI is 23.25%.

8.4 Performance Evaluation of the Optimization

We evaluated the impact of the optimization on the
lmbench and web servers. SEIMI introduces significant
overhead in handling lightweight system calls and signals
in lmbench, and the slowdown can reach up to 2.4X (see
Table 5). The reason why we did not evaluate other real-
world applications in §8.3 is that the web servers are more
system calls intense than others. Fig. 12 shows the system
calls density of real-world applications, and the web servers
are the most syscall-intensive among the three types of
applications. In summary, for syscall-intensive benchmarks,
the optimization of SEIMI introduces a 535X overhead
reduction on average on Lmbench benchmark, and a 21.94%
overhead reduction on average on four web servers.
8.4.1 Lmbench

15

TABLE 8: Lmbench overhead brought by the MPX, MPK and
SEIMI w/ and w/o optimization when protecting defenses.

Config
OCFI

IH MPX MPK SEIMI SEIMI-OPT Reduction

null call 0.03% 0.10% 0.07% 249.34% 0.14% 1780X
null I/O 0.10% 0.52% 0.04% 223.20% 0.79% 282X
signal install 0.50% 1.08% 0.70% 193.93% 0.55% 352X
signal handle 0.36% 0.57% 1.53% 217.52% 2.73% 79X

Config
SS

IH MPX MPK SEIMI SEIMI-OPT Reduction

null call 0.07% 0.17% 0.58% 267.79% 0.14% 1912X
null I/O 0.24% 0.73% 0.28% 230.83% 0.53% 435X
signal install 1.31% 1.08% 0.76% 194.44% 0.63% 308X
signal handle 0.06% 0.07% 0.08% 216.92% 0.47% 461X

Config
CPI

IH MPX MPK SEIMI SEIMI-OPT Reduction

null call 0.14% 1.17% 1.24% 264.22% 1.10% 239X
null I/O 0.02% 0.11% 0.75% 225.35% 0.83% 271X
signal install 1.13% 3.55% 28.47% 244.28% 21.80% 10X
signal handle 0.38% 0.66% 0.97% 220.71% 0.75% 293X

Firstly, we evaluated the code partition method, including
(1) how many lines of code are placed in HR3; (2) the dynamic
ratio of the MPK-based domain switching in HR3 during the
execution; (3) the dynamic ratio of the system calls invoked
in HR3. Table 7 gave the statistical data when protecting
the lmbench system-call/signal intensive benchmarks with
OCFI. The column “LoCmpk

LoC ” indicates the ratio of the lines
of code placed in HR3 to the total lines of code; the column
“Switchingmpk

Switching ” indicates the dynamic ratio of the numbers
of the MPK-based domain switching to all the numbers
of the domain switching during the execution; and the
column “SyscallsHR3

Syscalls ” denotes the dynamic ratio of system
calls invoked in HR3 to all system calls. SEIMI places less
than 13% of code in HR3, there are around 60% of the MPK-
based domain switching during run-time, and almost all
system calls are invoked in HR3.

Secondly, we evaluated the performance overhead re-
duction of the optimization on lmbench. Table 8 shows the
lmbench overhead brought by MPX, MPK, and SEIMI with
and without optimization to protect OCFI, SS, and CPI. We
failed to run lmbench with the protection of AG and the
optimized SEIMI. On (arithmetic) average, the optimization
of SEIMI introduces a 535X reduction on the above 12 cases.
Optimized SEIMI is slower than MPX only when protecting
signal install with CPI, but it still has lower overhead
than MPK. For all other cases, the overhead incurred by the
optimized SEIMI is as negligible as MPX and MPK.
8.4.2 Web Servers

To evaluate the code partition method on real-world
applications, we applied the optimized SEIMI on web
servers. Table 7 shows the statistical data when protecting
web servers with OCFI. we can see SEIMI only places a
small part of code in HR3 (less than 4%), the ratio of the
MPK-based domain switching is less than 14%, and around
25% of system calls are invoked in HR3. Table 9 shows the
overhead of SEIMI with and without the optimization, and
the experimental method is the same as §8.3. On (arithmetic)
average, the optimization of SEIMI introduces a 21.94%
overhead reduction on above 13 cases. We can see that when
protecting Lighttpd with OCFI, SEIMI with and without the
optimization are both slower than MPX.
8.5 Evaluation of the Elimination Tool

Firstly, we evaluated the effectiveness of the unintended
instruction elimination tool. We applied this tool to the SPEC
CPU2006 C/C++ benchmarks, four web servers, and four
databases. There are 10,741 unintended POPF instructions
that occurred in the above applications, and no STAC instruc-
tions occurred. Experimental results are shown in Table 10.
The Sum column shows the total number of unintended
POPF instructions that occurred in each application. The
Op. to Offset columns represent the number of unin-
tended instructions occurring in these fields. Elimination
Strategies columns represent the number of unintended
instructions eliminated by each elimination strategy and its
proportion in the total. Table 10 shows that, on (arithmetic)
average, there are 49.83% of unintended instructions can
be eliminated in Phase-1 by transforming code; and there
are 4.30% of unintended instructions can be eliminated
in Phase-2 by reordering data (DR column); through the
gadgets unusable analysis in Phase-3, 32.27% of unintended
instructions are filtered out without handling; only 13.59%
of unintended instructions must be patched in Phase-4.

Secondly, we evaluated the runtime overhead that the
elimination tool introduced. All applications were compiled
without any protection (i.e, defenses and memory isolation
methods). After applying this tool, we ran the rewritten
application binaries in the normal user mode. The inputs
and parameters of the applications are the same as §8.2 and
§8.3. The experiments show that the runtime performance
overhead introduced by the elimination tool is negligible.
9 DISCUSSION
Hardware supporting for intra-process isolation schemes.
Intel VT-x [25] was released on the Pentium 4 processors in
2005, and Intel SMAP [26] was released on the 4th Haswell
processors in 2013. Intel MPX [26] and MPK [26] were
released on 6th Skylake processors in 2015, and MPX has
been removed from 10th Ice Lake processors in 2019. Older
processors released from 2013 to 2015 could only utilize
SMAP for memory isolation.
PKU Pitfall attacks. By using system calls, the attacks
proposed in PKU Pitfall [43] try to construct the unintended
instructions WRPKRU in executable pages to enable or disable
the access permission arbitrarily, bypass the permission
check, or modify the PKRU registers. These attacks can
also compromise SEIMI by constructing the unintended
instructions STAC/POPFQ or modifying the RFLAGS register.
Users should deploy the defenses proposed in PKU Pitfall
to filter/check system calls to prevent such attacks. And
these defenses can be in conjunction with both MPK-based
isolation schemes and SEIMI.
Limitations of SEIMI. MPX-based isolation supports unlim-
ited domains, and MPK-based isolation supports 16 domains.
Compared to these isolation schemes, SEIMI only supports
two domains. In addition, compared to MPX and MPK,
SEIMI requires VT-x. As a result, it cannot be used inside a
VM unless the target hypervisor supports nested VT-x that
could also incur highly expensive performance overhead.
So how to promote the performance of SEIMI in nested
virtualization is an interesting topic of future consideration.
Leveraging privileged hardware for user code. Dune [44]
is the only work we are aware of that also leverages Intel
VT-x to provide user-level programs with system privileges.

16

TABLE 9: Web servers performance overhead brought by the optimization version of SEIMI when applied to four defenses.

Applications
OCFI SS CPI AG

SEIMI SEIMI-OPT Reduction SEIMI SEIMI-OPT Reduction SEIMI SEIMI-OPT Reduction SEIMI SEIMI-OPT Reduction

Nginx 1.77% 1.32% 34.09% 2.43% 2.02% 20.30% 3.08% 2.28% 35.09% 2.01% 1.45% 38.62%
Apache 1.82% 1.68% 8.33% 2.15% 1.85% 16.22% 1.80% 1.66% 8.43% — — —
Lighttpd 4.46% 3.58% 24.58% 3.78% 2.97% 27.27% 2.46% 1.94% 26.80% — — —
Openlitespeed 1.61% 1.49% 8.05% 1.42% 1.22% 16.39% 1.38% 1.14% 21.05% — — —

TABLE 10: Eliminating unintended POPF instructions. RR, IR, BBR and FR are short for register assignment, instruction reorder,
basic block reorder and function reorder respectively in Phase-1. DR is short for data reorder and GUA is short for gadgets unusable
analysis. Since no unintended POPF occurs in prefix field, we omit this column.

Applications Sum Op.
Mod

SIB
Displacement

Imm.
Offset Elimination Strategies

R/M RefX RefD Const IntraF InterF RR IR BBR FR DR GUA Patch

400.perlben. 533 0 45 11 0 223 2 21 94 137 46(8.6%) 102(19.1%) 42(7.9%) 92(17.3%) 64(12.0%) 152(28.5%) 35(6.6%)
401.bzip2 19 0 7 7 0 1 0 0 2 2 12(63.2%) 1(5.3%) 1(5.3%) 0(0.0%) 0(0.0%) 3(15.8%) 2(10.5%)
403.gcc 2435 7 78 61 0 407 978 219 268 417 73(3.0%) 203(8.3%) 127(5.2%) 256(10.5%) 141(5.8%) 607(24.9%) 1028(42.2%)
429.mcf 1 0 0 0 0 0 0 1 0 0 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%) 1(100.0%) 0(0.0%)
433.milc 34 0 2 2 0 7 0 2 3 18 2(5.9%) 4(11.8%) 1(2.9%) 5(14.7%) 2(5.9%) 18(52.9%) 2(5.9%)
444.namd 38 10 0 4 0 2 0 1 4 17 2(5.3%) 1(2.6%) 1(2.6%) 14(36.8%) 0(0.0%) 14(36.8%) 6(15.8%)
445.gobmk 380 1 25 190 0 44 0 6 37 77 166(43.7%) 19(5.0%) 18(4.7%) 52(13.7%) 15(3.9%) 71(18.7%) 39(10.3%)
447.dealII 166 0 59 39 0 13 0 12 18 25 75(45.2%) 7(4.2%) 12(7.2%) 21(12.7%) 5(3.0%) 19(11.4%) 27(16.3%)
450.soplex 81 0 7 28 0 3 0 1 17 25 16(19.8%) 2(2.5%) 10(12.3%) 14(17.3%) 1(1.2%) 27(33.3%) 11(13.6%)
453.povray 428 3 42 17 0 151 4 56 38 117 46(10.7%) 67(15.7%) 24(5.6%) 82(19.2%) 35(8.2%) 103(24.1%) 71(16.6%)
456.hmmer 70 0 5 29 0 5 0 3 8 20 23(32.9%) 2(2.9%) 2(2.9%) 9(12.9%) 1(1.4%) 20(28.6%) 13(18.6%)
458.sjeng 257 0 0 194 0 17 0 23 5 18 159(61.9%) 9(3.5%) 3(1.2%) 5(1.9%) 6(2.3%) 51(19.8%) 24(9.3%)
462.libqua. 4 0 0 0 0 1 0 0 1 2 0(0.0%) 1(25.0%) 1(25.0%) 0(0.0%) 0(0.0%) 2(50.0%) 0(0.0%)
464.h264ref 315 11 9 149 0 77 17 1 26 25 116(36.8%) 44(14.0%) 16(5.1%) 16(5.1%) 18(5.7%) 62(19.7%) 43(13.7%)
470.lbm 2 0 0 0 0 1 0 0 1 0 0(0.0%) 1(50.0%) 0(0.0%) 0(0.0%) 0(0.0%) 1(50.0%) 0(0.0%)
471.omnet. 265 0 12 0 0 82 0 15 31 125 12(4.5%) 46(17.4%) 5(1.9%) 83(31.3%) 20(7.5%) 73(27.5%) 26(9.8%)
473.astar 22 4 1 1 0 12 0 1 2 1 2(9.1%) 6(27.3%) 0(0.0%) 1(4.5%) 5(22.7%) 5(22.7%) 3(13.6%)
482.sphinx3 64 1 1 34 0 5 0 2 5 16 19(29.7%) 2(3.1%) 5(7.8%) 5(7.8%) 1(1.6%) 23(35.9%) 9(14.1%)
483.xalan. 726 1 196 14 0 46 2 95 89 283 193(26.6%) 18(2.5%) 35(4.8%) 177(24.4%) 14(1.9%) 179(24.7%) 110(15.2%)
Nginx 212 2 71 4 0 18 0 10 44 63 69(32.5%) 6(2.8%) 30(14.2%) 45(21.2%) 8(3.8%) 39(18.4%) 15(7.1%)
Apache 123 7 12 6 0 11 2 37 16 32 14(11.4%) 5(4.1%) 7(5.7%) 24(19.5%) 4(3.3%) 19(15.4%) 50(40.7%)
Lighttpd 87 0 16 3 0 8 5 5 16 34 13(14.9%) 5(5.7%) 9(10.3%) 18(20.7%) 2(2.3%) 33(37.9%) 7(8.0%)
Openlite. 1808 19 187 66 3 345 8 111 420 649 203(11.2%) 167(9.2%) 194(10.7%) 264(14.6%) 93(5.1%) 707(39.1%) 180(10.0%)
MySQL 1774 14 420 58 0 349 16 191 231 495 357(20.1%) 148(8.3%) 123(6.9%) 328(18.5%) 121(6.8%) 451(25.4%) 246(13.9%)
SQLite 227 12 78 0 0 0 1 12 9 115 12(5.3%) 0(0.0%) 7(3.1%) 84(37.0%) 0(0.0%) 99(43.6%) 25(11.0%)
Redis 610 8 21 9 0 96 17 220 87 152 21(3.4%) 49(8.0%) 66(10.8%) 75(12.3%) 30(4.9%) 128(21.0%) 241(39.5%)
Memcached 60 0 21 3 1 11 0 1 2 21 17(28.3%) 5(8.3%) 1(1.7%) 3(5.0%) 4(6.7%) 27(45.0%) 3(5.0%)

It however requires the code running in ring 0 is secure
and trusted. For the untrusted code, such as plugins in the
browser, Dune runs a sandbox in ring 0. Compared to Dune,
an inherent difference is SEIMI allows an untrusted code
to run in ring 0, which brings significant challenges but, on
the other hand, ensures the efficiency—running untrusted
code in ring 3 will incur frequent context switching thus
significant performance overhead.

10 CONCLUSION
Intra-process memory isolation is a fundamental building
block for memory-corruption defenses. In this paper, we
propose a highly efficient intra-process memory isolation
technique, SEIMI, which leverages the widely used and
efficient hardware feature—SMAP. To use this privileged
hardware, SEIMI safely places the user code in a privileged
mode by using the Intel VT-x techniques. To avoid introduc-
ing security threats, we propose multiple new techniques
to ensure the safe privilege escalation of the user code.
Experiments show that SEIMI is much more efficient than
the state-of-the-art isolation techniques.

ACKNOWLEDGMENTS

This work was supported by the NSFC under grant 61902374,
U1736208, U1636204, and U1836213, and supported in part
by the NSF awards CNS-1815621 and CNS-1931208.

REFERENCES

[1] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to Make ASLR
Win the Clone Wars: Runtime Re-Randomization,” in NDSS, 2016.

[2] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz,
“Enabling Client-Side Crash-Resistance to Overcome Diversification
and Information Hiding,” in NDSS, 2016.

[3] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking Holes in Information Hiding,” in USENIX Security, 2016.

[4] E. Göktas, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portoka-
lidis, C. Giuffrida, and H. Bos, “Undermining Information Hiding
(and What to Do about It),” in USENIX Security, 2016.

[5] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU,” in NDSS, 2017.

[6] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopou-
los, “No Need to Hide: Protecting Safe Regions on Commodity
Hardware,” in EuroSys, 2017.

[7] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor: Intra-Process Isolation for High-Throughput
Data Plane Libraries,” in USENIX ATC, 2019.

[8] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK),” in USENIX Security, 2019.

[9] X. Z. Nathan Burow and M. Payer, “Shining Light On Shadow
Stacks,” in IEEE Symposium on Security and Privacy, 2019.

[10] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “IMIX:
In-Process Memory Isolation EXtension,” in USENIX Security, 2018.

[11] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque Control-Flow Integrity,” in NDSS, 2015.

[12] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer Integrity,” in OSDI, 2014.

[13] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping Address Space Leakage for Code Reuse Attacks,”
in CCS. ACM, 2015, pp. 280–291.

[14] Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W.-C. Hsu, and Y. Cheng,
“ReRanz: A Light-Weight Virtual Machine to Mitigate Memory
Disclosure Attacks,” in VEE. ACM, 2017, pp. 143–156.

[15] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello,
“Shuffler: Fast and Deployable Continuous Code Re-randomization,”
in OSDI. USENIX Association, 2016, pp. 367–382.

[16] M. Backes and S. Nürnberger, “Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing,” in
USENIX Security, 2014.

[17] L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code Randomization Resilient to (Just-In-Time) Return-
Oriented Programming,” in NDSS, 2015.

[18] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi,
“Timely Rerandomization for Mitigating Memory Disclosures,” in
CCS, 2015.

[19] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic Memory Safety
for Unsafe Languages,” in PLDI. ACM, 2006, pp. 158–168.

17

[20] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“StackArmor: Comprehensive Protection From Stack-based Memory
Error Vulnerabilities for Binaries.” in NDSS, 2015.

[21] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in IEEE SP, 2013.

[22] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting Mem-
ory Disclosure with Efficient Hypervisor-enforced Intra-domain
Isolation,” in CCS. ACM, 2015, pp. 1607–1619.

[23] Intel, “Control-flow Enforcement Technology Preview.” 2017.
[24] L. Mogosanu, A. Rane, and N. Dautenhahn, “MicroStache: A

Lightweight Execution Context for In-Process Safe Region Isolation,”
in RAID, 2018.

[25] Chapter 23.1 Introduction to virtual machine extensions, “Intel 64
and IA-32 Architectures Software Developer’s Manual.”

[26] Intel, “Intel 64 and IA-32 Architectures Software Developer’s
Manual.” 2019.

[27] Chapter 3.4.3 Segment Registers, “Intel 64 and IA-32 Architectures
Software Developer’s Manual.” 2019.

[28] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world.” in CCS, 2014.

[29] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. S. Adve,
“Nested kernel: An operating system architecture for intra-kernel
privilege separation.” in ASPLOS, 2015.

[30] “IDA Pro.” https://www.hex-rays.com/ida-pro/.
[31] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[32] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[34] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
TACAS/ETAPS. Springer-Verlag, 2008.

[35] Z. Wang, C. Wu, Y. Zhang, B. Tang, P.-C. Yew, M. Xie, Y. Lai,
Y. Kang, Y. Cheng, and Z. Shi, “SafeHidden: An Efficient and
Secure Information Hiding Technique Using Re-randomization,” in
USENIX Security, 2019.

[36] L. McVoy and S. Carl, “lmbench: Portable tools for performance
analysis,” in USENIX ATC, 1996.

[37] “sysbench.” https://dev.mysql.com/downloads/benchmarks.html.
[38] “twemperf.” https://github.com/twitter-archive/twemperf.
[39] “Kraken.” https://krakenbenchmark.mozilla.org.
[40] Webkit, “SunSpider JavaScript Benchmark.”

https://webkit.org/perf/sunspider/sunspider.html.
[41] Google, “The JavaScript Benchmark Suite for the modern web.”

2017, http://chromium.github.io/octane/.
[42] “CanvasMark Benchmark.” 2013, https://www.kevs3d.co.uk/dev/

canvasmark/.
[43] R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU

pitfalls: Attacks on pku-based memory isolation systems,” in
USENIX Security, 2020.

[44] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe User-level Access to Privileged CPU
Features,” in USENIX OSDI, 2012.

Chenggang Wu is a professor at Institute of
Computing Technology, Chinese Academy of Sci-
ences. His research interests include the dynamic
compilation, including binary translation, dynamic
optimization, bug detection on concurrent pro-
gram, and software security.

Mengyao Xie is currently working toward the
PhD degree in the Institute of Computing Technol-
ogy, Chinese Academy of Sciences. Her research
interests include software security and virtualiza-
tion.

Zhe Wang is currently an associate professor
at Institute of Computing Technology, Chinese
Academy of Sciences. His research interests
are in dynamic binary translation, multi-threaded
program record-and-replay, operating systems,
system virtualization, and memory corruption
attacks and defenses.

Yinqian Zhang is a full professor at the Depart-
ment of Computer Science and Engineering of
SUSTech. His research interest is computer sys-
tem security, with particular emphasis on cloud
computing security, OS security and side-channel
security.

Kangjie Lu is an assistant professor in the Com-
puter Science & Engineering Department of the
University of Minnesota-Twin Cities. He received
the Ph.D. degree in Computer Science from
the Georgia Institute of Technology. His current
research aims to secure computer systems by
hardening code and design, finding vulnerabili-
ties, and detecting privacy leaks.

Xiaofeng Zhang received Master degree in Com-
puter Technology from Introduction to University
of Chinese Academy of Sciences (UCAS) in 2019,
Now he is currently working in Alibaba-inc. His
research interests include distributed computing
and OLTP system.

Yuanming Lai received the BS degree in Digital
Media Technology from Central China Normal
University in 2013, and the Master degree in
Pattern Recognition and Intelligence System from
Huazhong University of Science and Technology,
in 2016. Now he is in Institute of Computing
Technology, Chinese Academy of Sciences. His
research interests include information security
and machine learning.

Yan Kang received the BS degree and the Mas-
ter degree in Software Engineering from Bei-
jing University of Aeronautics and Astronautics
(BUAA) in 2014 and 2017, Now she is currently
working in Institute of Computing Technology,
Chinese Academy of Sciences. Her research
interests include software and system security.

Min Yang received the B.Sc. and the Ph.D. de-
grees in computer science from Fudan University
in 2001 and 2006, respectively, where he is
currently a professor in the School of Computer
Science. His research interests include system
security and AI security.

Tao Li received his Ph.D. in Computer Science
from Nankai University, China in 2007. He works
at the College of Computer Science, Nankai
University as a Professor. He is the Member of
the IEEE Computer Society and the ACM, and
the distinguished member of the CCF. His main
research interests include heterogeneous com-
puting, machine learning and Internet of things.

18

http://chromium.github.io/octane/
https://www.kevs3d.co.uk/dev/canvasmark/
https://www.kevs3d.co.uk/dev/canvasmark/

	Introduction
	Background and related work
	Intra-process Memory Isolation
	Intel VT-x Extension
	SMAP in Processors

	Overview
	Threat Model
	High-Level Design
	Key Challenges
	Approach Overview

	Securely Executing User Code in Ring 0
	Memory Management
	Intercepting Privileged Instructions
	Identifying Privileged Instructions
	Triggering VM Exit
	Raising Exceptions
	Invalidating the Execution Effects

	Redirecting and Delivering Kernel Handlers

	Implementation
	SEIMI APIs and Usage
	The Start and Exit of the Target Process

	Optimization
	Switch between GR0 and HR3
	 The Interfaces for the Running State Switching
	 The Method of the Running State Switching
	 The Memory Isolation in the Different Running States

	The Code Partitions

	Isolation without Relying on Defenses
	Problem Statement
	Unintended Instructions Analysis
	Overview
	Phase-1: Code Transformation
	Phase-2: Data Adjustment
	Phase-3: Gadgets Unusable Analysis
	Phase-4: Binary Patch

	Discussion

	Evaluation
	Microbenchmarks Evaluation
	Macrobenchmarks Evaluation
	SPEC CPU2006 benchmarks
	Parsec-3.0 benchmarks

	Real-world Applications Evaluation
	Web servers
	Databases
	JS engines
	Chromium browser

	Performance Evaluation of the Optimization
	Lmbench
	Web Servers

	Evaluation of the Elimination Tool

	 Discussion
	Conclusion
	References
	Biographies
	Chenggang Wu
	Mengyao Xie
	Zhe Wang
	Yinqian Zhang
	Kangjie Lu
	Xiaofeng Zhang
	Yuanming Lai
	Yan Kang
	Min Yang
	Tao Li

