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Making Information Hiding Effective Again
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Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and Zhiping Shi

Abstract—Information hiding (IH) is an important building block for many defenses against code reuse attacks, such as code-pointer
integrity (CPI), control-flow integrity (CFI) and fine-grained code (re-)randomization, because of its effectiveness and performance. It
employs randomization to probabilistically “hide” sensitive memory areas, called safe areas, from attackers and ensures their
addresses are not leaked by any pointers directly. These defenses used safe areas to protect their critical data, such as jump targets
and randomization secrets. However, recent works have shown that IH is vulnerable to various attacks. In this paper, we propose a new
IH technique called SafeHidden. It continuously re-randomizes the locations of safe areas and thus prevents the attackers from probing
and inferring the memory layout to find its location. A new thread-private memory mechanism is proposed to isolate the thread-local
safe areas and prevent adversaries from reducing the randomization entropy. It also randomizes the safe areas after the TLB misses to
prevent attackers from inferring the address of safe areas using cache side-channels. Existing IH-based defenses can utilize
SafeHidden directly without any change. Our experiments show that SafeHidden not only prevents existing attacks effectively but also
incurs low performance overhead.

Index Terms—Side Channel Attacks, Information Hiding, Intra-process Memory Isolation, TLB Misses.
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1 INTRODUCTION

INFORMATION hiding (IH) is a software-based security
technique, which hides a memory block (called “safe

area”) by randomly placing it into a very large virtual
address space, so that memory hijacking attacks relying
on the data inside the safe area cannot be performed. As
all memory pointers pointing to this area are ensured to
be concealed, attackers could not reuse existing pointers
to access the safe area. Moreover, because the virtual ad-
dress space is huge and mostly inaccessible by attackers,
the high randomization entropy makes brute-force probing
attacks [1], [2] very difficult to succeed without crashing the
program.

Due to its effectiveness and efficiency, IH technique has
become an important building block for many defenses
against code reuse attacks. Many prominent defense meth-
ods, such as code-pointer integrity (CPI), control-flow in-
tegrity (CFI) and fine-grained code (re-)randomization, rely
on IH to protect their critical data. For example, O-CFI [3]
uses IH to protect all targets of indirect control transfer
instructions; CPI [4] uses IH to protect all sensitive pointers;
RERANZ [5], Shuffler [6], Oxymoron [7], Isomeron [8] and
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ALSR-Guard [9] use IH to protect the randomization secrets.
For a long time, IH was considered very effective. How-

ever, recent advances of software attacks [10], [11], [12], [13],
[14] have made it vulnerable again. Some of these attacks
use special system features to avoid system crashes when
scanning the memory space [11], [12]; some propose new
techniques to gauge the unmapped regions and infer the
location of a safe area [13]; some exploit the thread-local
implementation of safe areas, and propose to duplicate safe
areas by using a thread spraying technique to increase the
probability of successful probes [10]; others suggest that
cache-based side-channel attacks can be used to infer the
location of safe areas [14]. These attacks have fundamentally
questioned the security promises offered by IH, and severely
threatened the security defenses that rely on IH techniques.

To counter these attacks, this paper proposes a new
information hiding technique, which we call SafeHidden.
Our key observation is as follows: The security of IH tech-
niques relies on (1) a high entropy of the location of the safe
areas, and (2) the assumption that no attacks can reduce
the entropy without being detected. Prior IH techniques
have failed because they solely rely on the program crashes
to detect attacks, but recent attacks have devised novel
methods to reduce entropy without crashing the programs.

SafeHidden avoids these design pitfalls. It mediates all
types of probes that may leak the locations of the safe
areas, triggers a re-randomization of the safe areas upon
detecting legal but suspicious probes, isolates the thread-local
safe areas to maintain the high entropy, and raises security
alarms when illegal probes are detected. To differentiate
accidental accesses to unmapped memory areas and illegal
probing of safe areas, SafeHidden converts safe areas into
trap areas after each re-randomization, creating a number of
trap areas after a sequence of re-randomization operations.
Accesses to any of these trap areas are captured and flagged
by SafeHidden. SafeHidden is secure because it guarantees
that any attempt to reduce the entropy of the safe areas’ locations
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either lead to a re-randomization (restoring the randomness) or a
security alarm (detecting the attack).

SafeHidden is designed as a loadable kernel module,
which is self-contained and can be transparently integrated
with existing software defense methods (e.g., CPI and CFI).
The design and implementation of SafeHidden entail sev-
eral unconventional techniques: First, to mediate all system
events that may potentially lead to the disclosure of safe
area locations, SafeHidden needs to intercept all system
call interfaces, memory access instructions, and TLB miss
events that may be exploited by attackers to learn the virtual
addresses of the safe areas. Particularly interesting is how
SafeHidden traps TLB miss events: It sets the reserved bits
of the page table entries (PTE) of the safe area so that all
relevant TLB miss events are trapped into the page fault
handler. However, because randomizing safe areas also in-
validates the corresponding TLB entries, subsequent benign
safe area accesses will incur TLB misses, which may trigger
another randomization. To address this challenge, after re-
randomizing the safe areas, SafeHidden utilizes hardware
transactional memory (i.e., Intel TSX [15]) to determine
which TLB entries were loaded before re-randomization and
preload these entries to avoid future TLB misses.

Detecting TLB misses is further complicated by a new
kernel feature called kernel page table isolation (KPTI) [16].
Because KPTI separates kernel page tables from user-space
page tables, TLB entries preloaded in the kernel cannot be
used by the user-space code. To address this challenge, Safe-
Hidden proposes a novel method to temporarily use user-
mode PCIDs in the kernel mode. To prevent the Meltdown
attack (the reason that KPTI is used), it also flushes all kernel
mappings of newly introduced pages from TLBs.

Second, SafeHidden proposes to isolate the thread-local
safe area (by placing it in the thread-private memory) to
prevent the attackers from reducing its randomization en-
tropy. Unlike conventional approaches to achieve thread-
private memory, SafeHidden leverages hardware-assisted
extended page table (EPT) [15]. It assigns an EPT to each
thread; the physical pages in other threads’ thread-local safe
area are configured not accessible in current thread’s EPT.
Compared to existing methods, this method does not need
any modification of kernel source code, thus facilitating
adoption.

To summarize, this paper makes the following contribu-
tions to software security:
• It proposes the re-randomization based IH technique to

protect the safe areas against all known attacks.
• It introduces the use of thread-private memory to isolate

thread-local safe areas. The construction of thread-private
memory using hardware-assisted extended page tables is
also proposed for the first time.
• It devises a new technique to detect TLB misses, which

is the key trait of cache side-channel attacks against the
locations of the safe areas.
• It develops a novel technique to integrate SafeHidden

with KPTI, which may be of independent interest to
system researchers.
• It implements and evaluates a prototype of SafeHidden,

and demonstrates its effectiveness and efficiency through
extensive experiments.

2 BACKGROUND AND MOTIVATION

2.1 Information Hiding

Information hiding (IH) technique is a simple and efficient
isolation defense to protect the data stored in a safe area.
It places the safe area at a random location in a very large
virtual address space. It makes sure that no pointer pointing
to the safe area exists in the regular memory space, hence,
making it unlikely for attackers to find the locations of the
safe areas through pointers. Instead, normal accesses to the
safe area are all done through an offset from a dedicated
register.

Table 1 lists some of the defenses using the IH technique.
The column “TL” shows whether the safe area is used only
by its own thread or by all threads. The column “AF”
shows how frequent the code accesses the safe area. Because
most accesses to the safe area are through indirect/direct
control transfer instructions, their frequencies are usually
quite high. The column “Content in protected objects”
shows the critical data tried to protect in safe areas. The
column “Reg” shows the designated register used to store
the (original) base address of the safe area. Some of them
use the x86 segmentation register %fs/%gs. Others use the
stack pointer register on X86 64, %rsp, that originally points
to the top of the stack. They access a safe area via an offset
from those registers. For the %gs register, they often use the
following formats: %gs:0x10, %gs:(%rax), %gs:0x10(%rax),
etc. For the %rsp register, they often use the following
formats: 0x10(%rsp), (%rsp, %rax, 0x8), pushq %rax 1, etc.

A safe area is usually designed to be very small. For
example, the size of a safe area shown in Table 1 is usually
limited to be within 8 MB in practice. On today’s main-
stream X86 64 CPUs, the randomization entropy of an 8
MB safe area is 224. Such a high randomization entropy
makes brute force probing attacks [1], [2] hard to guess its
location successfully. A failed guess will result in a crash
and detected by administrators.

2.2 Attacks against Information Hiding

Recent researches have shown that the IH technique is
vulnerable to attacks. To locate a safe area, attackers may
either improve the memory scanning technique to avoid
crashes, or trigger the defense’s legal access to the safe area
and infer its virtual address using side-channels.

2.2.1 Memory Scanning
The attackers could avoid crashes during their brute-force
probing. For example, some adversaries have discovered
that some daemon web servers have such features. The
daemon servers can fork worker processes that inherit the
memory layout. If a worker process crashes, a new worker
process will be forked. This enables the so-called clone-
probing attacks where an adversary repeatedly probes differ-
ent clones in order to scan the target memory regions [11].
CROP [12] chooses to use the exception handling mecha-
nism to avoid crashes. During the probing, an access viola-
tion will occur when an inadmissible address is accessed.

1. It still conforms to the access model. The designated register is
%rsp, and the offset is equal to 0. The only difference is that it will
change the value of the designated register.
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Defense Protected Objects Reg Content in Protected Objects AF TL
O-CFI [3] Bounds Lookup Table %gs The address boundaries of basic blocks targeted by an indirect branch instruction. High No
RERANZ [5] Real Return Address Table %gs The table that contains the return addresses pushed by call instructions. High Yes
Isomeron [8] Execution diversifier data %gs The mapping from the randomized code to the original code. Hign No

ASLR-Guard [9] AG-Stack %rsp Dynamic code locators stored on the stack, such as return addresses. High Yes
Safe-stack %gs ELF section remapping information and the key of code locator encryption. High No

Oxymoron [7] Randomization-agnostic
translation table %fs The translation table that contains the assigned indexes that are used to replace

all references to code and data. High No

Shuffler [6] Code pointer table %gs The table that contains all indexes that are transformed from all function pointers
at their initialization points. High No

CFCI [17] Protected Memory %gs File name and descriptors, and the mapping between file names and file descriptors. Low No

CPI [4]
Safe Stack %rsp Return address, spilled register, and objects accessed within the function

through the stack pointer register with a constant offset. High Yes

Safe Pointer Store %gs Sensitive pointers and the bounds of target objects pointed by these pointers. High No
TABLE 1: The list of defenses using IH. AF is short for Access Frequency. TL is short for Thread Local.

But, the event can be captured by an exception handler
instead of crashing the system.

Attackers could also use memory management APIs to
infer the memory allocation information, and then locate the
safe area. In [13], it leverages the allocation oracles to obtain
the location of a safe area. In a user’s memory space, there
are many unmapped areas that are separated by code and
data areas. To gauge the size of the largest unmapped area,
it uses a binary search method to find the exact size by
allocating and freeing a memory region repeatedly. After
getting the exact size, it will allocate the memory in this
area through the persistent allocation oracle. It then uses the
same method to gauge the second largest unmapped area.
Because a safe area is mostly placed in an unmapped area,
an attacker can probe its surrounding areas to find its
location without causing exceptions or crashes.

All probing attacks need to use such covert techniques
to probe the memory many times without causing crashes
because the size of a user’s memory space is very large.
In [10], it finds the safe area in many defenses is thread
local (see Table 1). So, it proposes to leverage the thread
“spraying” technique to “spray” a large number of safe
areas to reduce the number of probings. After spraying, the
attackers only need very few probes to locate the safe area.

2.2.2 Cache-based Side-Channel Attacks
To translate a virtual address to a physical address, the
MMU initiates a page table (PT) walk that visits each level
of the page table sequentially in the memory. To reduce the
latency, most-recently accessed page table entries are stored
in a special hardware cache, called translation lookaside buffer
(TLB). Because of the large virtual address space in 64-
bit architectures, a hierarchy of cache memories has been
used to support different levels of page-table lookup. They
are called the page table caches, or paging-structure caches
by Intel [15]. In addition, the accessed PT entries are also
fetched into the last level cache (LLC) during the PT walk.

It has been demonstrated that cache-based side-channels
can break coarse-grained address space layout randomiza-
tion [14]. The location of the safe area can be determined
through the following attack method: First, the attacker
triggers the defense system’s access to the safe area. To
ensure this memory access invokes a PT walk, the attacker
cleanses the corresponding TLB entries for the safe area’s
virtual address beforehand. Second, the attacker conducts
a Prime+Probe or Evict+Time cache side-channel at-
tack [18] to monitor which cache sets are used during the
PT walk. As only certain virtual addresses map to a specific
cache set, the virtual address of the safe area can be inferred
using cache side-channel analysis.

However, it is worth mentioning that to successfully de-
termine the virtual address of one memory area, hundreds of such
Prime+Probe or Evict+Time tests are needed. It is also imperative
that the addresses of the PTEs corresponding to this memory area
are not changed during these tests. That is, the cache lines mapped
by these PTEs are not changed.

2.3 Strict Intra-process Memory Isolation

Compared to information hiding, intra-process memory
isolation could provide a stronger security guarantee in
protecting the sensitive data used in the defense mecha-
nisms [19], [20], [21], [22].

Intra-process memory isolation can be categorized into
address-based and domain-based isolation. Address-based
isolation checks (e.g., bound-check) each memory access
from untrusted code to ensure that it cannot access the safe
area. The main overhead of this method is brought by the
code that performs the checks. Intel provides MPX (with
dedicated registers and instructions) for efficient bound-
checking, thus offering the most efficient address-based
isolation [23]. But it is still not practical due to high-
performance overhead: When protecting the safe area of
O-CFI using the MPX-based scheme (i.e., address-based),
the runtime overhead is 26.63% [22]. Another disadvantage
of this scheme is that it is not safe, i.e., un-instrumented
instructions can still access the safe area [24].

Domain-based isolation instead controls the access per-
mission of the safe areas. The permission to access this
region is granted when requested by the trusted code and
is revoked when the access is finished. However, memory
accesses from the untrusted code cannot enable the access
permission. The main source of the performance overhead
of domain-based isolation is the operations for enabling and
disabling the memory-access permissions. So, many works
proposed to use existing hardware features to accelerate the
permission switching overhead. For example, SEIMI uses
the Supervisor-mode Access Prevention(SMAP) [22], ERIM
uses the Memory Protection Keys (MPK) [19] in Intel, and
Secage uses the VMFUNC hardware feature [25]. Among
them, the most efficient domain-based isolation is to use
the SMAP [22]. But it is still not efficient enough to protect
the frequently accessed safe areas. For example, it incurs
18.29% and 12.49% performance overhead when protecting
the O-CFI and the Shadow Stack, repectively [22]. When
using the MPK-based scheme, it incurs more performance
overhead than the SMAP-based scheme — it incurs 34.83%
and 21.08% performance overhead when applied to the O-
CFI and the Shadow Stack to protect the SPEC CPU 2006
benchmark, respectively [22]. But existing works, such as
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ERIM [19], showed that the MPK-based scheme is fairly
fast. For example, ERIM reported that it only incurs 5.3%
performance overhead when applied to the CPI to protect
the SPEC CPU 2006 benchmark [4]. The reason why the
MPK-based scheme has worse performance behavior on O-
CFI and Shadow Stack than CPI is due to the different fre-
quency of the permission switching — the more frequently
switching, the higher performance overhead. We conducted
a statistical experiment on SPEC and found the average
frequency of permission switching (per milliseconds) of
O-CFI, Shadow Stack, and CPI is 9,018.09, 3,272.28, and
61.59, respectively. So, the scalability of the domain-based
isolations on different defenses is not good.

The overhead of neither the address-based isolation nor
the domain-based isolation is acceptable for a deployed
mechanism [26]. Besides, the existing strict memory iso-
lations also face other deployment issues. The address-
based isolation will increase the code size greatly due to
the instrumentation of all memory access instructions [21].
The domain-based isolation suffers from the limited number
of domains. For example, the SMAP-based scheme only
supports two domains [22]; the MPK-based scheme only
supports 16 domains [19]. Although the libmpk provides
an unlimited number of domains through virtualizing the
protection keys of MPK, the domain switching overhead
will increase to the overhead of a syscall at most.

So, some works proposed to modify the architecture to
provide strong and efficient memory isolation [24], [27].
IMIX [24] extends the x86 ISA with a new memory-access
permission to mark safe areas as security-sensitive and
allows access to safe areas only using a newly introduced
instruction. Similarly, MicroStache [27] achieves it by modi-
fying the Gem5 simulator. However, IMIX and MicroStache
are not yet supported by commodity hardware.

2.4 Motivation of SafeHidden
The IH techniques offer efficient but weaker protection, and
strict memory isolation techniques offer strong but expen-
sive protection. So the developers face a dilemma that how
to strike a balance between the performance and security in
their defenses to protect the safe areas. Our solution to this
problem is to harden the more efficient information hiding
technique to make it secure and effective again. Our key
insight is to perform attack detection and re-randomization
for information hiding, which only introduce performance
overhead when attacks occur. As such, no additional over-
head is observed in the normal use of the system.

3 THREAT MODEL

We consider an IH-based defense that protects a vulnera-
ble application against code reuse attacks. This application
either stands as a server that accepts and handles remote
requests (e.g., through a web interface), or executes a sand-
boxed scripting code such as JavaScript as done in a modern
web browsers. Accordingly, we assume the attacker has the
permission to send malicious remote requests to the web
servers or lure the web browsers to visit attacker-controlled
websites and download malicious JavaScript code.

This IH-based defense has a safe area hidden in the
victim process’s memory space. We assume the design of

the defense is not flawed: That is, before launching code
reuse attacks, the attacker must circumvent the defense by
revealing the locations of the safe areas (e.g., using one
of many available techniques discussed in §2.2). We also
assume the implementation of defense system itself is not
vulnerable, and it uses IH correctly: That is, (1) any access
to the safe area is all done through an offset from a dedicated
register; (2) the offset value can be leaked and manipulated
by attackers, but the dedicated register cannot be leaked
(e.g., it cannot be stored in the regular memory); (3) the
safe area should be designed to be very small, and defenses
should allocate in advance for a large enough area to store a
safe area that may be grown, e.g., the whole memory space
of a shadow stack should be allocated in advance; (4) there is
no pointer pointing to the safe area that exists in the regular
memory space, including obtaining the address indirectly
through some calculations. For example, the safe area has
a fixed offset from the .text section, attackers could use the
location of the .text section and the leaked offset value to
infer the location of the safe area. We assume the underlying
operating system is trusted and secured.

We assume the existence of some vulnerabilities in the
application that allows the attacker to (a) read and write
arbitrary memory locations; (b) allocate or free arbitrary
memory areas (e.g., by interacting with the application’s
web interface or executing script directly); (c) create any
number of threads (e.g., as a JavaScript program). These
capabilities already represent the strongest possible adver-
sary given in the application scenarios (i.e., web servers
and browsers). Given these capabilities, all known attacks
against IH can be performed.

3.1 Attack Vectors
Particularly, we consider the following attack vectors. All
known attacks employ one of the four vectors listed below
to disclose the locations of the safe areas.
• Vector-1: Gathering memory layout information to help

to locate safe areas, by probing memory regions to infer
if they are mapped (or allocated);
• Vector-2: Creating opportunities to probe safe areas with-

out causing crashes, e.g., by using resumable exceptions;
• Vector-3: Reducing the entropy of the randomized safe

area locations to increase the success probability of
probes, by decreasing the size of unmapped areas or
increasing the size of safe areas;
• Vector-4: Monitoring page-table access patterns using

cache side-channels to infer the addresses of safe areas,
while triggering legal accesses to safe areas.

4 SAFEHIDDEN DESIGN

We proposed SafeHidden, an IH technique that leverages
re-randomization to prevent the attackers from locating the
safe areas. It protects safe areas in both single-threaded
programs and multi-threaded programs. It is designed pri-
marily for Linux/X86 64 platform, as most of the defenses
leveraging IH are developed on this platform.

At runtime, SafeHidden detects all potential memory
probes. To avoid overly frequent re-randomization, it mi-
grates the safe area to a new randomized location only
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Fig. 1: The high-level overview of the proposed re-
randomization with the dispersed trap areas.

after the detection of a suspicious probing. It then leaves
a trap area of the same size behind. Figure 1 illustrates the
high-level overview of the re-randomization method. In the
figure, the memory layout is changed as the location of the
safe area is being moved continuously, and the unmapped
memory space becomes more fragmented by trap areas. The
ever-changing memory layout could block Vector-1.

As the attackers continue to probe, new trap areas will
be created. Gradually, it becomes more likely for probes
to stumble into trap areas. If the attacker touches a trap
area through any type of accesses, SafeHidden will trigger
a security alarm and capture the attack. The design of trap
areas mitigates the attacks from Vector-2, and significantly
limits the attackers’ ability to probe the memory persistently.

To block Vector-3, SafeHidden prevents unlimited shrink
of unmapped areas and unrestricted growth of safe areas:
(1) Unmapped areas. Because IH assumes that safe areas are
hidden in a very large unmapped area, SafeHidden must
prevent extremely large mapped areas. In our design, the
maximum size of the mapped area allowed by SafeHidden
is 64 TB, which is half of the entire virtual address space
in the user space. Rarely do applications consume terabytes
of memory; even big data applications only use gigabytes
of virtual memory space; (2) Safe areas. Although safe areas
in IH techniques are typically small and do not expand at
runtime, attackers could create a large number of threads to
increase the total size of the thread-local safe areas. To defeat
such attacks, SafeHidden uses thread-private memory space
to store thread-local safe areas. It maintains strict isolation
among threads. When the thread-local safe area is protected
using such a scheme, the entropy will not be reduced by
thread spraying because any thread sprayed by an attacker
can only access its own local safe area.

To mitigate Vector-4, SafeHidden also monitors legal
accesses to the safe area that may be triggered by the
attacker on purpose. Once such a legal access is detected,
SafeHidden randomizes the location of the safe area. As
the virtual address of the safe area is changed during re-
randomization, the corresponding PTEs and their cache
entries that are used by the attacker to make inferences no
longer reflects the real virtual address of the safe area. Thus,
Vector-4 is blocked. It is worth noting that unlike the cases
of detecting illegal accesses to the safe area, no trap area is
created after the re-randomization.

In the following subsections, we will detail how Safe-
Hidden recognizes and responds to the stealthy memory
probes (see §4.1), how SafeHidden achieves the thread-private
memory (see §4.2) and how SafeHidden defeats cache-based
side-channel analysis (see §4.3).

4.1 Stealthy Memory Probes

In order to detect potential stealthy memory probes, we list
all memory operations in the user space that can potentially
be used as probings from the attackers (see Table 2).

The first row of Table 2 lists system calls that are re-
lated to memory management. The attackers could directly
use them to gauge the layout of the memory space by
allocating/deallocating/moving the memory or changing
the permission to detect whether the target memory area
is mapped or not. The second row lists the system calls
that could return an EFAULT (bad address) error, such
as “ssize_t write (int fd, void * buf, size_t
count)”. These system calls have a parameter pointing to
a memory address. If the target memory is not mapped, the
system call will fail without causing a crash, and the error
code will be set to EFAULT. These system calls can be used
to probe the memory layout without resulting in a crash.
The third row lists the system calls that can clone a memory
space. The attackers could use them to reason about the
memory layout of the parent process from a child process.
The fourth row lists memory access instructions that can
trigger a page fault exception when the access permission
is violated. The attackers could register or reuse the signal
handler to avoid a crash when probing an invalid address.

Four types of memory regions are considered separately:
safe areas, unmapped areas, trap areas, and other areas.
Unmapped areas are areas in the address space that are
not mapped; trap areas are areas that were once safe areas;
other areas store process code and data. As shown in Table 2,
SafeHidden intercepts different types of memory accesses to
these areas and applies different security policy accordingly:
• If the event is an access to an unmapped area, SafeHid-

den will randomize the location of all safe areas. The
original location of a safe area become a trap area.
• If the event is a memory cloning, it will perform random-

ization in the parent process after creating a child process
to make the safe areas’ locations different.
• If the event is an access to safe areas through memory

management system calls or system calls with EFAULT
return value, SafeHidden will trigger a security alarm.
• If the event is an access to safe areas through memory

access instructions, it will disassemble the instruction to
judge if the memory operand is a legal offset from the
dedicated register. If it is illegal, SafeHidden will trigger a
security alarm. Note that SafeHidden cannot disassemble
and judge the access pattern if the execution of a memory
access instruction does not trigger a page-fault exception.
• If the event is an access to trap areas through memory

access instructions, memory management system calls,
or system calls with EFAULT return value, it will trigger
a security alarm.
• SafeHidden does not react to memory accesses to other

areas. Since they do not have pointers pointing to the safe
areas, probing other areas do not leak the locations.
To avoid excessive use of the virtual memory space,

SafeHidden sets an upper limit on the total size of all trap
areas (the default is 1 TB). Once the size of trap areas reaches
the upper limit, SafeHidden will remove some randomly
chosen trap area in each randomization round.
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Events Interception Points Responses in SafeHidden
SA UA TA OA

memory management syscalls mmap, munmap, mremap, mprotect, brk, ... Alarm Rand Alarm –
syscalls that could return EFAULT read, write, access, send, ... Alarm Rand Alarm –
cloning memory space clone, fork, vfork Rand Rand Rand Rand
memory access instructions page fault exception –/Alarm Rand Alarm –

TABLE 2: Summary of potential stealthy probings and SafeHidden’s responses. “SA”: safe areas, “UA”: unmapped areas, “TA”:
trap areas, “OA”: other areas. “Alarm”: triggering a security alarm. “Rand”: triggering re-randomization. “–”: do nothing.

The design of such a security policy is worth further
discussion here. Trap areas are previous locations of safe
areas, which should be protected from illegal accesses in
the same way as safe areas. As normal application behav-
iors never access safe areas and trap areas in an illegal
way, accesses to them should raise alarms. For accesses
to unmapped areas, an immediate alarm may cause false
positives because the application may also issue memory
management system calls, system calls with an EFAULT
return value, or a memory access that touches unmapped
memory areas. Therefore, accesses to unmapped areas only
trigger re-randomization of the safe area to restore the ran-
domness (that could invalidate the knowledge of previous
probes), but no alarm will be raised. An alternative design
would be counting the number of accesses to unmapped
areas and raising a security alarm when the count exceeds
a threshold. However, setting a proper threshold is very
difficult because different probing algorithms could have
different probing times. Therefore, monitoring critical sub-
sets of the unmapped areas—the safe areas and trap areas—
appears a better design choice.

4.2 Thread-private Memory

Thread-private memory technique was usually used in multi-
threaded record-and-replay techniques [28], [29], [30]. We
propose to use thread-private memory to protect safe areas.
Conventional methods to implement thread-private memory
is to make use of thread-private page tables in the OS kernel.
As a separate page table is maintained for each thread, a
reference page table for the entire process is required to keep
track of the state of each page. The modification of the kernel
is too complex, which cannot be implemented as a loadable
kernel module: For example, to be compatible with kswapd,
the reference page table must be synchronized with the
private page tables of each thread, which requires tracking
of CPU accesses of each PTE (especially the setting of the
accessed and dirty bits2 by CPU). The need for kernel source
code modification and recompilation restricts the practical
deployment of this approach.

To address this limitation, we propose a new approach to
implement thread-private memory using the hardware virtu-
alization support. Currently, a memory access in a guest VM
needs to go through two levels of address translation: a guest
virtual address is first translated into a guest physical address
through the guest page table (GPT), which is then translated
to its host physical address through a hypervisor maintained
table, e.g., the extended page table (EPT) in Intel processors, or
the nested page table (NPT) in AMD processors. Using Intel’s

2. These flags are provided for use by memory-management software
to manage the transfer of pages into and out of physical memory. CPU
is responsible for setting these bits via the physical address directly.
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Fig. 2: An example of the thread-private memory mechanism. P0
and P1 is thread-private memory page of Thread0 and Thread1.

EPT as an example, multiple virtual CPUs (VCPU) within
a guest VM will share the same EPT. For instance, when
the two VCPUs of a guest VM run two threads of the same
program, both the virtual CR3 registers point to the PT of
the program, and both EPT pointers (EPTPs) of VCPUs are
pointing to a shared EPT.

To implement a thread-private memory, we can instead
make each EPTP to point to a separate EPT to maintain its
own thread-private memory. In such a scheme, each thread
will have its own private EPT. The physical pages mapped
in a thread’s private memory in other threads’ private EPTs
will be made inaccessible. Figure 2 depicts an example of
our thread-private memory scheme. When Thread1 tries to
access its thread-private memory page P1, the hardware will
walk both GPT and EPT1 to get the P3 successfully. But
when Thread0 tries to access P1, it will trigger an EPT
violation exception when the hardware walking EPT0 and
be captured by the hypervisor.

In such a scheme, when a thread is scheduled on a
VCPU, the hypervisor will set EPTP to point to its own EPT.
In addition, SafeHidden synchronizes the EPTs by tracking
the updates of the entries for the thread-local safe areas. For
example, when mapping a guest physical page, SafeHidden
needs to add the protection of all threads’ EPTs for this page.

The thread-private memory defeats Vector-3 completely.
When thread-local safe areas are stored in such thread-private
memory, spraying thread-local safe areas is no longer useful
for the attackers because it will spray many prohibited areas
that are similar to trap areas, called shielded areas (e.g., P1 is
Thread0’s shielded area in Figure 2), and be captured more
easily.

4.3 Thwarting Cache Side-Channel Attacks

As discussed in §2.2.2, a key step in the cache side-channel
attack by Gras et al. [14] is to force a PT walk when an access
to the safe area is triggered. Therefore, a necessary condition
for such an attack is to allow the attacker to induce TLB
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misses in a safe area. SafeHidden mitigates such attacks by
intercepting TLB misses when accessing safe areas.

To only intercept the TLB miss occurred in safe areas,
SafeHidden leverages a reserved bit in a PTE on X86 64
processors. When the reserved bit is set, a page fault excep-
tion with a specific error code will be triggered when the
PTE is missing in TLB. Using this mechanism, a TLB miss
can be intercepted and handled by the page fault handler.
SafeHidden sets the reserved bit in all of the PTEs for the
safe areas. Thus, when a TLB miss occurs, it is trapped into
the page fault handler and triggers the following actions: (1)
It performs one round of randomization for the safe area;
(2) It clears the reserved bit in the PTE of the faulting page;
(3) It loads the PTE (after re-randomization) of the faulting
page into the TLB; (4) It then sets the reserved bit of the PTE
again. It is worth noting that loading the TLB entry of the
faulting page is a key step. Without this step, the program’s
subsequent accesses to the safe area will cause TLB misses
again, which will trigger another randomization.

The re-randomization upon TLB miss effectively de-
feats cache-based side-channel analysis. As mentioned in
§2.2.2, a successful side-channel attack requires hundreds
of Prime+Probe or Evict+Time tests. However, as each
test triggers a TLB miss, the safe area is re-randomized after
every test. The PTEs used to translate the safe areas in each
PT levels are re-randomized. Thus, the cache lines mapped
by these PTEs are also re-randomized that completely de-
feating cache-based side-channels [14].

Nevertheless, two issues may arise: First, the PTEs of
a safe area could be updated by OS (e.g., during a page
migration or a reclamation), and thus clearing the reserved
bits. To avoid these unintended changes to the safe areas’
PTEs, SafeHidden traps all updates to the corresponding
PTEs to maintain the correct values of the reserved bits.
Second, as the location of a safe area is changed after a
randomization, it will cause many TLB misses when the
safe area is accessed at the new location, which may trig-
ger many false alarms and re-randomizations. To address
this problem, SafeHidden reloads the safe area’s PTEs that
were already loaded in the TLB back to the TLB after
re-randomization. This, however, requires SafeHidden to
know which PTEs were loaded in the TLB before the re-
randomization. To do so, SafeHidden exploits an additional
feature in Intel transactional synchronization extensions
(TSX), which is Intel’s implementation of hardware transac-
tional memory [15]. During a re-randomization, SafeHidden
touches each page in the safe area from inside of a TSX
transaction. If there is a TLB miss, a page fault exception
will occur because the reserved bit of its PTE is set. But
this exception will be suppressed by a TSX transaction and
handled by its abort handler. Therefore, SafeHidden can
quickly find out all loaded PTEs before the re-randomization
and reload them for the new location in the TLB without
triggering any page fault exception.

Integrating SafeHidden with kernel page table isolation
(KPTI) [16] introduces additional challenges. KPTI is a
default feature used in the most recent Linux kernels. It
separates the kernel page tables from user-space page tables,
which renders the pre-loaded TLB entries of the safe areas
in kernel unusable by the user-space application. We will
detail our solution in §5.
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Fig. 3: The probability of being captured by SafeHidden within
N probes (a) and the probability of locating the safe areas within
N probes successfully (b).

4.4 Security Analysis

SafeHidden by design completely blocks attacks through
Vector-1, Vector-3, and Vector-4. However, it only proba-
bilistically prevents attacks through Vector-2. As such, in
this section, we outline an analysis of SafeHidden’s security
guarantee. Specifically, we consider a defense system with
only one safe area hidden in the unmapped memory space.
We abstract the attackers’ behavior as a sequence of memory
probes, each of which triggers one re-randomization of the
safe area and creates a new trap area.

Pc ith =


(i · Pt) ·

i−1∏
j=1

(1− Ph − j · Pt) if i ≤ M

(M · Pt) · (
M∏
j=1

(1− Ph − j · Pt)) · (1− Ph −M · Pt)
i−1−M

if i > M
(1)

The probability of detecting probes. Let the probability
of detecting the attacks within N probes be Pc n. Then the
cumulative probability Pc n =

∑n
i=1 Pc ith, where Pc ith

represents the probability that an attacker escapes all i − 1
probes, but is captured in the ith probe when it hits a
trap area. An escape means that the attacker’s probe is
unsuccessful but remains undetected. Pc ith is calculated
in Equation (1), where i denotes the number of probes, j
denotes the number of existing trap areas, Ph denotes the
probability that the attacker hits the safe area in a probe,
Pt represents the probability that the attacker hits one of
the trap areas in a probe, M denotes the maximum number
of trap areas. As an escape results in one re-randomization
and the creation of a trap area, we approximate the number
of existing trap areas with the number of escapes. But the
number only increases up to M . So we consider if i reaches
M separately. In the equation, (i · Pt) or (M · Pt) represents
the probability that the probes are detected in the ith probe
and (1 − Ph − j · Pt) or (1 − Ph −M · Pt) represents the
probability of escaping the ith probe.

The attacker’s success probability. We denote the proba-
bility of the attacker’s successfully locating the safe area
within N probes as Ps n. Ps n =

∑n
i=1 Ps ith, where Ps ith

represents the probability that the attacker escapes in the
first i − 1 probes, but succeed in the ith probe. Ps ith is
provided in Equation (2).

Ps ith =


Ph ·

i−1∏
j=1

(1− Ph − j · Pt) if i ≤ M

Ph · (
M∏
j=1

(1− Ph − j · Pt)) · (1− Ph −M · Pt)
i−1−M

if i > M
(2)
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Discussion. When the size of the safe area is set to 8 MB, and
the maximum size of all trap areas is set to 1 TB, as shown in
Figure 3(a), Pc n increases as the number of probes grows.
When the number of probes reaches 15K, SafeHidden de-
tects the attack with a probability of 99.9%; Pc n approaches
100% as the number of probes reaches 20K. Figure 3(b)
suggests the value of Ps n increases as the number of probes
increases, too. But even if the attacker can escape in 15K
probes (which is very unlikely given Figure 3(a)), the proba-
bility of successfully locating the safe area is still only 0.03%
(shown in Figure 3(b)), which is the maximum that could
ever be achieved by the attacker. Notice that our abstract
model favors the attackers, for example: (1) no shielded areas
are considered in the analysis; (2) randomization triggered
by applications’ normal activities and TLB misses is ignored
in the analysis; (3) the access pattern check occurred in the
safe areas is ignored. Obviously, in the real world situation,
the attacker’s success probability will be even lower, and the
attack will be caught much sooner.

5 SYSTEM IMPLEMENTATION

SafeHidden is designed as a loadable kernel module. Users
could deploy SafeHidden by simply loading the kernel
module, and specifying, by passing parameters to the mod-
ule, which application needs to be protected and which
registers point to the safe area. No modification of the existing
defenses or re-compiling the OS kernel is needed.

5.1 Architecture Overview of SafeHidden

As described in §4.2, SafeHidden needs the hardware vir-
tualization support. It can be implemented within a Virtual
Machine Monitor (VMM), such as Xen or KVM. However,
the need for virtualization does not preclude its application
in non-virtualized systems. To demonstrate this, we inte-
grated a thin hypervisor into the kernel module for a non-
virtualized OS. The thin hypervisor virtualizes the running
OS as the guest without rebooting the system. The other
components inside the kernel module are collectively called
GuestKM, which runs in the guest kernel.

After loading the SafeHidden module, it first starts the
hypervisor and then triggers the initialization of GuestKM
to install hooks during the Initialization Phase. Figure 4
shows an overview of SafeHidden’s architecture. We can see
that SafeHidden is composed of two parts: the hypervisor
and the GuestKM. In the initialization phase, GuestKM
installs hooks to intercept three kinds of guest events: context
switching, page fault exceptions, and certain system calls.

SafeHidden then starts to protect the safe areas by ran-
domizing their locations and isolating the thread-local safe
areas during the Runtime Monitoring Phase. In the GuestKM,
the Syscall Interceptor and the #PF Interceptor modules are
used to intercept system calls and page fault exceptions. When
these two types of events are intercepted, they will request
the Checker module to determine if SafeHidden needs to
raise a security alarm, or if it needs to notify the Randomizer
module to perform randomization. Meanwhile, SafeHidden
needs to maintain the thread-private EPT to isolate the thread-
local safe areas. The sync EPT module is used to synchronize
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Fig. 4: Architecture overview of SafeHidden.

the protected threads’ page tables with their EPTs. The
switch EPT module will switch EPTs when a protected
thread is scheduled. Because both modules need to operate
EPTs, they are coordinated by the Hypercall Handlers mod-
ule. The EPT Violation Handler module is used to monitor
illegal accesses to the thread-local safe areas.

5.2 Initialization Phase

Task-1: starting hypervisor. When the kernel module is
launched, the hypervisor starts immediately. It configures
the EPT paging structures, enables virtualization mode, and
places the execution of the non-virtualized OS into the
virtualized guest mode (non-root VMX mode). At this time,
it only needs to create a default EPT for guest. Because
the guest is a mirror of the current running system, the
default EPT stores a one-to-one mapping that maps each
guest physical address to the same host physical address.

Task-2: installing hooks in guest kernel. When the guest
starts to run, GuestKM will be triggered to install hooks
to intercept three kinds of events: 1) To intercept the sys-
tem calls, GuestKM modifies the system_call_table’s
entries and installs an alternative handler for each of
them; 2) To intercept the page fault exception, GuestKM
uses the ftrace framework in Linux kernel to hook the
do_page_fault function; 3) To intercept context switches,
GuestKM uses the standard preemption notifier in Linux,
preempt_notifier_register, to install hooks. It can be
notified through two callbacks, the sched_in() and the
sched_out(), when a context switch occurs.

5.3 Runtime Monitoring Phase

Recognizing safe areas. GuestKM intercepts the execve()
system call to monitor the startup of the protected process.
Based on the user-specified dedicated register, GuestKM can
monitor the event of setting this register to obtain the value.
In Linux kernel, the memory layout of a process is stored
in a list structure, called vm_area_struct. GuestKM can
obtain the safe area by searching the link using this value.
According to Table 1, there are two kinds of registers that
store the pointer of a safe area: 1) The 64-bit Linux kernel
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only allows a user process to set the %gs or %fs segmenta-
tion registers through the arch_prctl() system call 3. So,
GuestKM intercepts this system call to obtain the values of
these registers; 2) All existing methods listed in Table 1 use
%rsp pointed safe area to protect the stack. So, GuestKM
analyzes the execution result of the execve() and the
clone() system calls to obtain the location of the safe area,
i.e., the stack, of the created thread or process. Once a safe
area is recognized, the reserved bits in its PTEs will be set.

To determine whether a safe area is thread-local or not,
GuestKM monitors the event of setting the dedicated regis-
ter in child threads. If the register is set to point to a different
memory area, it means that the child thread has created
its thread-local safe area. Until the child thread modifies the
register to point to a different memory area, it shares the
same safe area with its parent.

Randomizing safe areas. As described in §4.1 and §4.3,
when GuestKM needs to perform randomization, it invokes
the optimized implementation of do_mremap() function
in the kernel with a randomly generated address (by
masking the output of the rdrand instruction with The
0x7ffffffff000) to change the locations of the safe areas.
If the generated address has been taken, the process is
repeated until a usable address is obtained. It is worth
noting that GuestKM only changes the virtual address of
the safe area, the physical pages are not changed. After
migrating each safe area (not triggered by the TLB miss
event), GuestKM will invoke do_mmap() with the protec-
tion flag PROT_NONE to set the original safe area to be a
trap area. For multi-threaded programs, when the execution
of a thread triggers a randomization (not triggered by the
TLB miss event), the safe areas of all threads need to be
randomized. To ensure the correctness, GuestKM needs to
block all threads before randomizing safe areas.

Although all safe areas used in existing defenses in
Table 1 are position-independent, we do not rule out the
possibility that future defenses may store some position-
dependent data in the safe area. However, as any data related
to an absolute address can be converted to the form of
a base address with an offset, they can be made position
independent. Therefore, after randomizing all safe areas,
SafeHidden just needs to modify the values of the dedicated
registers to point to the new locations of the safe areas.

Loading TLB entries under KPTI. The kernel page table
isolation (KPTI) feature [16] was introduced into the main-
stream Linux kernels to mitigate the Meltdown attack [31].
For each procecss, it splits the page table into a user-
mode page table and a kernel-mode page table. The kernel-
mode page table includes both kernel-space and user-space
addresses, but it is only used when the system is running
in the kernel mode. The user-mode page table used in
the user mode contains all user-space address mappings
and a minimal set of kernel-space mappings for serving
system calls, handling interrupts and exceptions. Whenever
entering or exiting the kernel mode, the kernel needs to
switch between the two page tables by setting the CR3
register.

3. Recent CPUs supporting the WRGSBASE/WRFSBASE instructions
allow setting the %gs and %fs base directly, but they are restricted by
the Linux kernel to use in user mode.

Moreover, to avoid flushing TLB entries when switch-
ing page tables, the kernel leverages the Process Context
Identifier (PCID) feature [15]. When PCID is enabled, the
first 12 bits (bit 0 to bit 11) of the CR3 register represents
the PCID of the process which is used by the processor
to identify the owner of a TLB entry. The kernel assigns
different PCIDs to the user and kernel mode page tables (i.e.,
uPCID and kPCID respectively). When entering or exiting
the kernel mode, the kernel needs to switch between kPCID
and uPCID.

As mentioned in §4.3, SafeHidden needs to load PTEs
of the safe areas into the TLB every time it randomizes the
safe areas. However, it is challenging to make SafeHidden
compatible with KPTI. This is because SafeHidden only runs
in the kernel mode—it uses the kernel-mode page table with
kPCID, but the TLB entries of the safe areas must be loaded
from the user-mode page table using uPCID.

To address this problem, we propose a method that
binding uPCID with the kernel-mode page table temporar-
ily: SafeHidden runs in the kernel mode using the kernel-
mode page table. Before loading the TLB entries of the safe
areas, it switches from kPCID to uPCID temporarily. Then
without switching to the user-mode page table, it accesses
the safe area pages to load the target PTEs into the TLB with
uPCID. There is no need to switch to the user-mode page
table for two reasons: (1) TLB entries are only tagged with
PCIDs and virtual addresses; (2) the user-space addresses
are also mapped in the kernel-mode page table. After the
PTE loading, SafeHidden switches back to kPCID and then
flushes the TLBs of the instruction/data pages related to the
loading operation. This is to avoid these TLB entries (tagged
with uPCID) to be exploited by the Meltdown attack.

Reloading TLB entries after randomization. SafeHidden
uses Intel TSX to test which PTEs of the safe areas are
loaded in the TLB. The implementation is very similar to
the method of loading the user-mode TLB entries. The only
difference is that the accessing to the safe area pages is
placed in a transaction (between xbegin and xend instruc-
tions). The KPTI flushes the TLB in a lazy mode: If the page
tables are modified, it does not flush the TLB immediately. It
delays the flush operation until returning to the user mode.
The reloading operation of TLB entries will be done after
randomization but before TLB flush. So the reloaded TLB
entries will be flushed during the TLB flush operation. To
address this problem, we flush the TLB immediately after
randomization instead of flushing the TLB in the lazy mode.

Tracking GPT updates. The GPT entries of safe areas will
be updated dynamically. In order to track such updates
efficiently, we choose to integrate the Linux MMU notifier
mmu_notifier_register in GuestKM. The MMU noti-
fier provides a collection of callback functions to notify two
kinds of page table updates: invalidation of a physical page
and migration of a physical page. But it does not issue a
callback when OS maps a physical page to a virtual page.
To address this problem, we handle it in a lazy way by
intercepting the page fault exception to track this update.
Once GuestKM is notified about these updates, GuestKM
makes the modified entry invalid or valid, and then issues
a hypercall to notify the hypervisor to synchronize all EPTs.

Creating and destructing thread-private EPT. If a thread
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has no thread-local safe area, it shares its parent’s EPT. If it
is the main thread, it will be configured to use the default
EPT. If a thread has a thread-local safe area, GuestKM will
issue a hypercall to notify the hypervisor to initialize an EPT
for this thread. When initializing an EPT, SafeHidden will
configure the entries based on other threads’ local safe areas
by walking the GPT to find all physical pages in the safe
areas. Meanwhile, SafeHidden will also modify the entries
of other thread’s EPT to make all thread-local safe areas
isolated from each other. Whenever SafeHidden changes
other thread’s EPT, it will block the other threads first.
GuestKM also intercepts the exit() system call to monitor
a thread’s destruction. Once a thread with a private EPT is
killed, GuestKM notifies the hypervisor to recycle its EPT.

Monitoring context switches. When a thread is switched
out, GuestKM will be notified through the sched_out()
and it will switch to the default EPT. When GuestKM knows
a new thread is switched in through the sched_in(), it
will check whether the thread has a private EPT or not, and
switches to its EPT in if it does.

Monitoring illegal accesses. GuestKM intercepts all system
calls in Table 2 and checks their access areas by analyzing
their arguments. If there is an overlap between their access
areas with any of the trap/safe/shielded areas, GuestKM
will trigger a security alarm. Because there is no physical
memory allocated to the trap areas, any memory access to
those areas will be captured by intercepting the page fault
exception. With the isolation of the thread-local safe area, any
memory access to the shielded areas will trigger an EPT
violation exception, which will be captured by the hypervisor
(that notifies GuestKM). GuestKM also monitors the page
fault exception triggered in the safe areas. If a page fault
exception occurred, GuestKM will disassemble the fault
instruction and judge if the memory operand is the legal
access pattern or not (i.e., if it contains the dedicated register
or not). If it is illegal, GuestKM will trigger a security
alarm. Note that because the reserved bits are set in the
safe areas, all TLB misses in the safe areas trigger this
check, which decreasing the success probability of memory
probing further.

Handling security alarms. How these security alarms are
handled depends on the applications. For example, when
SafeHidden is applied in browsers to prevent exploitation
using JS code, it could mark the website from which the JS
code is downloaded as malicious and prevent the users from
visiting the websites. When SafeHidden is used to protect
web servers, alarms can be integrated with application
firewalls to block the intrusion attempts.

5.4 Optimizations in SafeHidden
In this subsection, we introduce some optimizations to
reduce the performance overhead in SafeHidden.

Disabling VPID. The Virtual Processor Identifier (VPID) is
intended for avoiding TLB flush during the context switch
between the guest and the host. This is done by assigning a
unique VPID for each guest VM and the host, and they can
only access their TLB entries which are grouped by VPID.
In SafeHidden, since the hypervisor is a part of the kernel
module of SafeHidden, it shares the same virtual address

and physical address with the kernel. So there is no need to
assign VPID for the VM and the hypervisor. And disabling
VPID can also enlarge the capacity of TLB used in the VM
which is the key factor that affects the number of TLB misses
in the safe areas.

Disabling EPT when there are no thread-local safe areas.
In SafeHidden, the EPT is used to achieve the thread-private
memory. But the two-dimensional paging mechanism will
incur the high-performance overhead when the TLB misses
are very frequent [32]. So disabling EPT at some situations
could gain performance benefit. Actually, for the single-
threaded programs and the multi-threaded programs with-
out thread-local safe areas, there is no requirement for the
EPT. So SafeHidden only enables the EPT mechanism when
it detects the thread-local safe areas were allocated.

Only testing reloaded TLB entries in TSX. SafeHidden
uses Intel TSX to test which PTEs of the safe areas are
loaded in the TLB during the randomization of the safe
areas. Scanning all PTEs of safe areas in the transaction of
Intel TSX is a time-consuming task. In fact, not all PTEs
of the safe area need to be tested. Since SafeHidden is
responsible for loading the PTE of safe areas into TLB,
SafeHidden only tests the PTEs that were reloaded in the
last re-randomization.

Avoiding parsing the arguments in I/O system calls. There
are a lot of I/O system calls in the Linux kernel. Hooking
all these system calls and parsing the arguments to identify
the type of access memory area is complicated and time-
consuming. Since all these system calls will access the user
memory space in the kernel-mode page table under KPTI,
we could monitor page fault exceptions of the user memory
space in the kernel mode to capture the memory access of
I/O system calls. For example, if a system call accesses the
unmapped area or the trap area, the page fault exception
will be raised. Thanks to the KPTI and the reserved bits
set in the safe areas, the page fault exception will be also
raised when these system calls access the safe areas. This is
because SafeHidden will not load the PTEs of the safe areas
with kPCID into TLB, any access to the safe areas in the
kernel-mode will raise the page fault exception.

Fast checking access pattern in the page fault exception.
Since the dedicated register is fixed, there is no need to dis-
assemble the fault instruction during the page fault excep-
tion occurred in the safe areas to check if it is illegal or not.
SafeHidden only matches the unique bytes in the encoding
of the fault instruction. For example, if the dedicated register
is the %gs segmentation register, SafeHidden only checks
the first byte of the fault instruction is 0x65 or not. This is
because the %gs register is the segment override prefix in the
X86 ISA, and the 0x65 is not encoded into any instruction
opcodes. So SafeHidden could use this unique byte to check
the access pattern.

6 EVALUATION

We implemented SafeHidden on Ubuntu 18.04 (Kernel
4.20.3 with KPTI enabled by default) that runs on a 3.4GHZ
Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB RAM.
SafeHidden is implemented with a total of 7,822 LoC (Lines
of Code), including the 186 lines assembly code and the
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Fig. 5: The distribution of probing times before being captured
(10,000 probes launched).

7,636 lines C language code. To evaluate the security and
performance of SafeHidden, we implemented by ourselves
two defenses that use safe areas, OCFI and SS. OCFI is a pro-
totype implementation of O-CFI [3], which uses thread-shared
safe areas (Table 1). OCFI first randomizes the locations of all
basic blocks and then instruments all indirect control trans-
fer instructions that access the safe areas, i.e., indirect calls,
indirect jumps, and returns. Each indirect control transfer
instruction has an entry in the safe areas, which contains
the boundaries of possible targets. For each instrumented
instruction, OCFI obtains its jump target and checks if it
is within the legal range. SS is our implementation of a
shadow stack, which is an example of the thread-local safe
areas (see Table 1). Shadow stacks are used in Safe Stack [4],
ASLR-Guard [9], and RERANZ [5]. SS adopts a compact
shadow stack scheme [21] (in contrast to a parallel shadow
stack scheme). To be compatible with uninstrumented li-
braries, SS instruments function prologues and epilogues
to access the shadow stacks (i.e., the safe areas). In both
cases, the size of the safe area is set to be 8 MB. To use
SafeHidden with SS and OCFI, one only needs to specify in
SafeHidden that the %gs register points to the safe areas. No
other changes are needed.

6.1 Security Evaluation

We evaluated SafeHidden in four experiments. Each exper-
iment evaluates its defense against one attack vector.

In the first experiment, we emulated an attack that uses
the allocation oracles [13] to probe Firefox browsers under
OCFI’s protection. The prerequisite of this attack is the
ability to accurately gauge the size of the unmapped areas
around the safe areas. To emulate this attack, we inserted a
shared library into Firefox to gauge the size of the unmapped
areas. When SafeHidden is not deployed, the attack can
quickly locate the safe area with only 104 attempts. Then
we performed 10,000 trials of this attack on Firefox protected
by OCFI and SafeHidden. The result shows that all the
10,000 trials failed, but in two different scenarios: In the
first scenario (9,217 out of 10,000 trials), the attacks failed
to gauge the size of the unmapped areas even when the
powerful binary search method is used. The prerequisite of a
binary search is that the location of the target object does not
change. However, SafeHidden’s re-randomization confuses
the binary search because the safe area moves continuously.
In the second scenario, even though the attacks can gauge
the exact size of an unmapped area, they always stumble
into one of the trap areas when accessing the surroundings
of the unmapped area, which triggers security alarms.

In the second experiment, we launched 10,000 trials of
CROP attacks [12] to probe a Firefox protected by OCFI. The

result shows that the attacks always successfully identified
the location of the safe area when SafeHidden is not de-
ployed. The time required is less than 17 minutes with no
more than 81,472,151 probes. However, the attacks always
fail when SafeHidden is deployed, and these probes are all
captured by trap areas. Figure 5 (a) shows the distribution of
the number of probes before an attack is detected by hitting
a trap area. We can see that the distribution is concentrated
in the range between [2000, 9000]. This experiment shows
that SafeHidden can prevent the continuous probing attacks
effectively.

In the third experiment, we launched 10,000 trials of
the CROP attack using thread spraying to probe Firefox
protected by SS. We sprayed 214 (=16,384) threads with
more than 16,384 thread-local safe areas, and then scanned
the Firefox process with a CROP attack. The result shows
that when SafeHidden is not deployed, the attacks can probe
the locations of the safe areas successfully. The time taken is
0.16s, with only 2,310 probes. With SafeHidden deployed, all
probes are captured before succeeding. Figure 5 (b) shows
the distribution of the number of probes before being cap-
tured. The distribution is concentrated in the range between
[50, 300], which is much lower than those in the second
experiment. There are two reasons for that: 1) The other
threads’ local safe areas become the current thread’s shielded
areas, which increases the probability of the probes being
captured; 2) All safe areas will be randomized after each
probe, which increases the number of trap areas quickly.

In the fourth experiment, we emulated a cache side-
channel attack against page tables using Revanc [33], which
is a tool based on [34]. This tool allocates a memory buffer
and then measures the access time of different pages in this
buffer repeatedly. It could infer the base address of this
buffer. To utilize this attack method against IH, we kept this
memory buffer in a safe area by modifying the source code
to force any access to this memory buffer through an offset
from the %gs register. When SafeHidden is not deployed,
this attack can obtain the correct base address of this buffer.
The attack fails when SafeHidden is deployed.

6.2 Performance Evaluation

We evaluated SafeHidden’s impact on the application’s per-
formance in terms of CPU computation, network I/O, disk
I/O, and jitter respectively. In this section, we only evaluate
the performance of SafeHidden with all optimizations en-
abled. In §6.3, we will evaluate the impact of optimizations
on SafeHidden specially.

For the experiment of CPU computation, we ran SPEC
CPU2006 benchmarks with ref input and multi-threaded
Parsec-2.1 benchmarks using native input with 8 threads; For
the experiment of network I/O, We chose the Apache web
server httpd-2.4.38 and Nginx-1.14.2 web server. Apache
was configured to work in mpm-worker mode, running in
one worker process with 8 threads. Nginx was configured
to work with 4 worker processes; For the experiment of disk
I/O, we chose benchmark tool Bonnie++ (version 1.03e);
For the experiment of jitter, we chose the SpiderMonkey
(v.59.0a1.0) which is the JavaScript engine of Firefox. For
each benchmark, we prepared two versions of the bench-
mark: (1) protected by SS, and (2) protected by OCFI. We
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Fig. 6: Performance overhead of SPEC and Parsec-2.1 benchmarks brought by SafeHidden when applied to SS and OCFI.

Program
#randomization Details of #randomization

Program
#randomization Details of #randomization

SS OCFI #brk() #mmap() #tlb miss SS OCFI #brk() #mmap() #tlb miss
SS OCFI SS OCFI

SPEC CPU2006 benchmark

perlbench 436,517 125,340 7,957 100 428,460 117,283 povray 521 335 26 30 465 279
bzip2 4,972 3,318 36 100 4,836 3,182 calculix 42,562 40,443 32,095 139 10,328 8,209
gcc 165,286 148,649 6,816 194 158,276 14,1639 hmmer 3,839 2,337 13 25 3,801 2,299
bwaves 23,684 29,140 701 45 22,938 28,394 sjeng 229,414 210,149 3 10 229,401 210,136
gamess 25,487 35,489 27 30 25,430 35,432 GemsFDTD 192,209 175,121 11 160 192,038 174,950
mcf 418,379 441,804 3 11 418,365 441,790 libquantum 414,355 219,887 14 39 414,302 219,834
milc 640,095 546,554 2,687 44 637,364 543,823 h264ref 7,839 3,095 545 60 7,234 2,490
zeusmp 9,743 10,294 3 10 9,730 10,281 tonto 12,452 10,241 298 20 12,134 9,923
gromacs 6,663 8,473 44 36 6,583 8,393 lbm 6,252 7,218 3 11 6,238 7,204
cactusADM 149,799 121,272 8,997 66 140,736 112,209 omnetpp 343,126 238,111 1,245 56 341,825 236,810
leslie3d 17,960 18,134 5 27 17,928 18,102 astar 931,365 714,905 3,928 46 927,391 710,931
namd 866 750 100 31 735 619 wrf 72,608 62,645 419 253 71,936 61,973
gobmk 11,692 89,923 59 594 11,039 89,270 sphinx3 4,398 3,483 144 146 4,108 3,193
dealII 50,392 113,977 40,103 53 10,236 73,821 xalancbmk 952,216 835,238 3,099 94 949,023 832,045
soplex 185,070 192,956 168 49 184,853 192,739 average 184,819 152,044 3,778 85 180,956 148,181
Parsec-2.1 benchmark

blackscholes 149,408 98,318 3 22 149,383 98,293 fluidanimate 159,641 192,288 231 23 159,387 192,034
bodytrack 13,871 11,890 2,486 6,558 4,827 2,846 vips 14,217 15,961 4 115 14,098 15,842
facesim 38,318 21,360 359 69 37,890 20,932 x264 7,132 9,407 42 162 6,928 9,203
ferret 106,646 63,384 222 39,032 67,392 24,130 canneal 294,270 289,342 5,917 24 288,329 283,401
freqmine 5,856 3,582 499 64 5,293 3,019 dedup 73,322 84,120 1,571 715 71,036 81,834
raytrace 30,266 29,166 1,279 57 28,930 27,830 streamcluster 301,924 290,417 7 23 301,894 290,387
swaptions 8,128 5,857 3 22 8,103 5,832 average 92,538 85,776 971 3,607 87,961 81,199
TABLE 3: Statistical data of SafeHidden when applied to SS and OCFI to protect SPEC CPU2006 and Parsec-2.1 benchmarks.

evaluated both the performance overhead of protecting
these benchmarks using SS and OCFI defenses and the
additional overhead of deploying SafeHidden to enhance
the SS and OCFI defenses.

6.2.1 CPU Intensive Performance Evaluation

Figure 6 shows the performance overhead of the OCFI and
SS defenses, and also the performance overhead of SafeHid-
den when applied to enhance the OCFI and SS defenses. For
SPEC benchmarks, we can see that the geometric mean per-
formance overhead incurred by OCFI and SS is 4.94% and
5.79%, respectively. For Parsec benchmarks, the geometric
mean performance overhead incurred by OCFI and SS is
7.23% and 6.24%. The overhead of some applications (e.g.,
perlbench, povray, Xalancbmk and blacksholes) is higher be-
cause these applications frequently execute direct function
calls and indirect control transfer instructions, which trigger
accesses to safe areas. Note these overheads were caused by
the adoption of OCFI and SS, but not SafeHidden.

For SPEC benchmarks, we can see that the geometric
mean performance overhead incurred by SafeHidden when
protecting OCFI and SS is 1.97% and 2.35%, respectively.
For Parsec benchmarks, the geometric mean performance
overhead incurred by SafeHidden is 3.39% and 5.16%, re-
spectively. It shows that SafeHidden is very efficient in
protecting safe areas. Based on the experimental results, we
can also see that SafeHidden is more efficient in protecting

single-threaded applications. This is due to two reasons:
(1) All threads need to be blocked when randomizing the
thread-shared safe areas or the thread-local safe areas (when
not triggered by a TLB miss); (2) When protecting the
thread-local safe areas, SafeHidden needs to synchronize the
thread-private EPTs with the guest page table, which could
introduce VM-Exit events.

Table 3 details some statistical data of SafeHidden when
applied to the OCFI and SS defenses to protect SPEC and
Parsec benchmarks. The column “#randomization” shows
the number of re-randomization to safe areas. On SPEC
and Parsec benchmarks, there are three operations that can
trigger a re-randomization: (1) Using brk() to move the top
of the heap; (2) Using mmap() to allocate a memory chunk;
(3) TLB misses occurred in safe areas. Because OCFI and
SS did not introduce extra invocation of system calls, the
numbers of brk() and mmap() are the same. Combined
with Figure 6, we can see that for SPEC benchmarks, the
performance overhead is related to the total number of
re-randomization. Except x264 using SS, the overhead of
most Parsec benchmarks is also related to the total number
of re-randomization. x264 spawns child threads more fre-
quently than other benchmarks, which causes SafeHidden
to frequently create and initialize thread-private EPTs. We
can also see that SafeHidden incurs much higher overhead
for canneal and streamcluster when protecting SS than OCFI.
This is because SafeHidden needs to enable EPT to isolate
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Fig. 7: Network I/O performance overhead brought by SafeHidden (short for SH) when applied to the SS and OCFI defenses.
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Fig. 8: Disk I/O performance overhead brought by SafeHidden
when applied to the SS and OCFI defenses.

thread-private safe areas when protecting SS, but EPT is
disabled in SafeHidden when protecting OCFI. In the two-
dimensional page table mechanism, the more TLB misses
triggered, the more memory virtualization overhead will
be incurred. Compared with other benchmarks in Parsec,
canneal and streamcluster trigger more TLB misses during
their execution. So the reason why the overhead difference
is so great between SS and OCFI is due to the memory
virtualization overhead in EPT.

6.2.2 Network I/O Performance Evaluation
Figure 7 shows the performance degradation of Apache
and Nginx servers under the protection of SS and OCFI
with and without SafeHidden. We use ApacheBench (ab) to
simulate 100 concurrent clients constantly sending 10,000
requests, each request asks the server to transfer a file. We
also varied the size of the requested file, i.e., {1K, 5K, 20K,
100K, 200K, 500K}, to represent different configurations.
From the figure, we can see that SS only incurs 1.60% and
1.98% overhead on average when protecting Apache and
Nginx. OCFI only incurs 1.45% and 2.13% overhead on
average when protecting Apache and Nginx. We can also
see that SafeHidden incurs 8.78% and 6.97% on average
when applied to SS and OCFI to protect Apache. The reason
why SafeHidden is more performant when protecting OCFI
than SS is also due to the memory virtualization, which is
already discussed in §6.2.1.

SafeHidden incurs only 4.96% and 4.42% on average
when applied to SS and OCFI to protect Nginx. So SafeHid-
den is more efficient in protecting Nginx than Apache. This
is due to two reasons: (1) For each request to Nginx, Nginx
will invoke several I/O system calls, such as recvfrom(),
write(), writev(), etc., which only access the allocated
memory space in the Nginx process. The system calls in
Nginx will not trigger randomization of the safe area. But

for each request to Apache, Apache will invoke the mmap()
system call to map the requested file into the virtual memory
space which could trigger the extra randomization of all
safe areas compared with Nginx; (2) Apache is a multi-
threaded program. SafeHidden needs to block all threads
when performing randomization of safe areas triggered by
the mmap() system call.

6.2.3 Disk I/O Performance Evaluation
The Bonnie++ sequentially reads/writes data from/to a
particular file in different ways. The read/write granular-
ity varies from a character to a block (i.e., 8192 Bytes).
Furthermore, we also test the time cost of the random
seeking. Figure 8 shows the disk I/O measurement results:
SS and OCFI defenses incur low performance overhead, i.e.,
2.18% overhead on average for SS and 1.76% overhead on
average for OCFI. SafeHidden brings only 1.20% overhead
on average for SS and 2.73% overhead on average for OCFI.
Compared with SPEC and Parsec benchmarks, this tool
invokes the write() and read() system calls to write and read
a very large file frequently. But these system calls only
access the allocated memory space that does not trigger
randomization of safe areas.

6.2.4 JavaScript Engine Performance Evaluation
We evaluated the SpiderMonkey with the Kraken bench-
mark [35] from Mozilla, which is widely used to test realistic
workloads. We evaluated each of the 14 test suites in Kraken
and calculated the geo mean of the overheads. OCFI and SS
incur 1.75% and 1.84% overhead on average when protect-
ing SpiderMonkey. SafeHidden incurs 4.27% and 5.49% on
average when applied to OCFI and SS to protect Spider-
Monkey. The overhead of three test suites (i.e., audio-beat-
detection, audio-fft, and audio-oscillator) is higher than other
test suites obviously. When protecting OCFI, SafeHidden
incurs 7.29%, 6.68%, and 8.03% overhead on these three
test suites, respectively; when protecting SS, SafeHidden
incurs 8.41%, 7.94%, and 9.26% overhead, respectively. This
is because these test suites trigger SpiderMonkey to allocate
a large amount of memory via using the mmap() system call
which results in a frequent re-randomization.

6.3 Performance Evaluation of Optimizations
In this section, we evaluate the impact of some opti-
mizations mentioned in §5.4 on performance overhead. As
shown in Table 4, we design six optimization levels in
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-O0
-O1 4
-O2 4 4
-O3 4 4 4
-O4 4 4 4 4
-O5 4 4 4 4 4

TABLE 4: Which optimizations are enabled among the different
optimization levels in SafeHidden.

SafeHidden. The optimization level -O0 disables all opti-
mizations, and the optimization level -O5 enables all opti-
mizations. From the -O0 to the -O5, each optimization level
only enables one more optimization compared to a lower
optimization level. For example, the -O3 enables an extra
optimization (named Testing reloaded TLB entries in TSX)
compared to the -O2.

6.3.1 The Impact on CPU Intensive Benchmarks
Table 5 shows the impact of different optimization levels
in SafeHidden when applied to enhance the OCFI and SS
defenses. Note that the overhead shown in the table is only
brought by SafeHidden when applied to the defenses.

The optimization level -O1 enables the optimization,
Disabling VPID, compared to the -O0. Disabling VPID could
enlarge the capacity of TLB used in the guest (including
protected processes), which can reduce the number of TLB
misses in the safe areas. In SafeHidden, the more TLB
misses in the safe areas, the more number of randomiza-
tion, and the higher performance overhead. So we can see
that SafeHidden achieves the performance improvement
for almost all SPEC and Parsec benchmarks. Particularly,
the performance improvements are more significant for 7
programs (bold in the column “-O1”) in SPEC and Parsec
benchmarks, this is due to the behaviors of these programs
have more frequent TLB misses.

The optimization level -O2 enables an extra optimiza-
tion, Disabling EPT when there are no thread-local safe areas,
compared to the -O1. In the two-dimensional paging mech-
anism, the more frequent TLB misses, the more performance
overhead in the memory virtualization. So similar to the -
O1, the -O2 achieves performance improvement for almost
all benchmarks and performs better on the same 7 programs.
Note that since the shadow stack of SS is a thread-local safe
area in multi-threaded programs, the -O2 does not disable
EPT for Parsec benchmarks and achieves no performance
improvement.

The optimization level -O3 enables an extra optimiza-
tion, Testing reloaded TLB entries in TSX, compared to the
-O2. Testing reloaded TLB entries is only performed during
the randomization of the safe areas. So the more frequent
randomizations, the more performance improvement will
be achieved in this optimization. Combined with Table 3,
the programs which trigger more randomizations of the safe
areas will have better performance improvement in Table 5
(bold in the column “-O3”).
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Fig. 9: Network I/O performance overhead (geo mean)
brought by SafeHidden with different optimization levels when
applied to the SS and OCFI defenses.

The optimization level -O4 enables an extra optimiza-
tion, Avoiding parsing the arguments in I/O system calls, com-
pared to the -O3. Parsing the arguments in I/O system calls
is used to identify the type of access memory area, and then
SafeHidden performs different actions. As shown in Table 5,
this optimization achieves the performance improvement
for almost all benchmarks. We can also see that some pro-
grams achieve a better performance improvement, which is
related to the number of the trap areas (#brk()+#mmap()
in Table 3): the more trap areas, the better performance
improvement. This is because all memory areas in the user
space are stored in the vm_area_struct structure which
is stored as a tree. Identifying the type of access memory
area is performed by traversing this tree. The overhead
of traversing this tree is related to the complexity of the
tree—the higher the complexity, the more overhead. Among
the actions in SafeHidden, only leaving the trap areas will
increase the complexity of that tree.

The optimization level -O5 enables an extra optimiza-
tion, Fast checking access pattern in the page fault exception,
compared to the -O4. In SafeHidden, all TLB miss events
occurred in the safe areas will trigger the page fault excep-
tion. SafeHidden intercepts this exception and then checks if
the fault instruction is illegal or not. This optimization will
improve the performance of this process, so the more TLB
misses occurred in the safe areas, the more performance im-
provement will be achieved by this optimization. Combined
with the column “#tlb miss” in Table 3, we can see that our
theoretical analysis is supported by the experimental results.

6.3.2 The Impact on Network I/O Benchmarks
Figure 9 shows the performance overhead brought by
SafeHidden with different optimizations when applied to
enhance the SS and OCFI defenses to protect the Apache
and Nginx. We can see that every optimization could bring
performance improvement for SafeHidden. We can also see
that the optimization level -O2 achieves no performance
improvement on the case, Apache+SS, compared to the -
O1. This is because EPTs must be used to isolated thread-
local safe areas, and they cannot be disabled. As discussed
in §6.2.2, compared with Nginx, Apache could trigger more
randomization of safe areas due to invoking the mmap()
system call in each request. And this randomization event
also leaves trap areas. So as shown in the figure, we can
see that there are two optimizations, which are related to
randomizations and trap areas, perform better in such a
situation. They are Testing reloaded TLB entries in TSX (i.e.,
the -O3 - the -O2) and Avoiding parsing the arguments in I/O
system calls (i.e., the -O4 - the -O3).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDSC.2021.3064086

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



15

Program
Overhead brought by SafeHidden when applied to SS

Program
Overhead brought by SafeHidden when applied to OCFI

-O0 -O1 -O2 -O3 -O4 -O5 -O0 -O1 -O2 -O3 -O4 -O5

SPEC CPU2006 benchmark

perlbench 5.31% 5.03% 4.41% 4.26% 4.03% 3.93% perlbench 4.16% 4.03% 3.64% 3.38% 3.09% 3.07%
bzip2 1.05% 1.05% 1.03% 1.03% 1.04% 1.02% bzip2 1.15% 1.13% 0.82% 0.81% 0.79% 0.75%
gcc 5.17% 4.42% 2.47% 2.01% 1.89% 1.42% gcc 3.85% 3.14% 1.29% 1.22% 1.14% 1.05%
bwaves 2.41% 2.39% 2.02% 1.92% 1.92% 1.91% bwaves 2.82% 2.81% 2.41% 2.42% 2.40% 2.41%
gamess 2.86% 2.86% 2.26% 2.03% 2.01% 2.01% gamess 2.18% 2.15% 1.31% 1.31% 1.30% 1.31%
mcf 12.91% 11.34% 8.51% 8.36% 7.98% 7.44% mcf 13.85% 12.39% 9.82% 8.99% 8.91% 8.23%
milc 5.26% 4.93% 3.41% 3.09% 3.04% 2.65% milc 6.17% 5.92% 4.04% 3.75% 3.71% 3.28%
zeusmp 2.07% 2.05% 2.04% 1.95% 1.89% 1.88% zeusmp 2.30% 2.24% 1.52% 1.51% 1.51% 1.49%
gromacs 1.73% 1.73% 1.52% 1.53% 1.51% 1.47% gromacs 1.16% 1.14% 1.13% 1.13% 1.11% 1.11%
cactusADM 4.16% 4.16% 4.11% 4.03% 3.75% 3.74% cactusADM 3.46% 3.41% 2.03% 2.03% 1.82% 1.82%
leslie3d 2.76% 2.77% 2.34% 2.19% 2.10% 2.10% leslie3d 2.22% 2.18% 0.99% 0.97% 0.95% 0.95%
namd 0.81% 0.92% 0.82% 0.77% 0.78% 0.76% namd 1.11% 1.11% 0.56% 0.56% 0.53% 0.53%
gobmk 1.74% 1.63% 1.53% 1.42% 1.42% 1.41% gobmk 2.46% 2.35% 1.48% 1.46% 1.44% 1.44%
dealII 3.90% 3.40% 2.42% 2.39% 2.11% 2.13% dealII 2.11% 2.05% 1.57% 1.57% 1.36% 1.35%
soplex 8.65% 7.43% 5.36% 4.84% 4.34% 4.15% soplex 6.84% 5.34% 3.72% 3.57% 3.56% 3.02%
povray 2.10% 2.09% 2.01% 2.02% 1.93% 1.92% povray 3.15% 3.04% 2.88% 2.83% 2.82% 2.82%
calculix 1.13% 1.13% 1.12% 1.12% 0.95% 0.96% calculix 1.43% 1.41% 1.02% 1.02% 0.83% 0.83%
hmmer 1.10% 1.11% 1.01% 1.02% 1.01% 1.01% hmmer 0.69% 0.67% 0.42% 0.42% 0.42% 0.42%
sjeng 5.52% 5.03% 4.63% 4.14% 4.13% 3.93% sjeng 5.84% 5.51% 4.32% 4.05% 4.04% 3.64%
GemsFDTD 10.25% 9.32% 7.04% 7.01% 6.74% 6.56% GemsFDTD 9.40% 8.15% 5.58% 5.17% 5.17% 4.88%
libquantum 6.83% 6.02% 5.72% 5.11% 5.05% 4.93% libquantum 5.29% 4.75% 3.26% 3.01% 3.01% 2.75%
h264ref 2.88% 2.75% 2.63% 2.53% 2.51% 2.51% h264ref 6.73% 6.45% 5.84% 5.83% 5.81% 5.79%
tonto 1.42% 1.43% 1.39% 1.35% 1.34% 1.33% tonto 1.33% 1.33% 1.01% 1.01% 1.01% 0.98%
lbm 1.30% 1.31% 0.91% 0.72% 0.69% 0.69% lbm 2.11% 2.10% 1.25% 1.25% 1.23% 1.23%
omnetpp 11.49% 10.26% 7.80% 6.53% 6.53% 6.08% omnetpp 12.20% 11.03% 7.42% 6.92% 6.81% 6.49%
astar 10.20% 9.43% 7.36% 6.91% 6.19% 5.81% astar 10.74% 9.36% 6.34% 5.99% 5.97% 5.58%
wrf 2.48% 2.47% 1.97% 1.88% 1.89% 1.88% wrf 2.38% 2.35% 2.07% 2.07% 2.02% 2.02%
sphinx3 2.79% 2.80% 2.10% 2.07% 2.05% 2.05% sphinx3 2.10% 2.09% 1.03% 1.03% 1.01% 1.01%
xalancbmk 14.24% 13.35% 10.92% 9.84% 9.81% 8.77% xalancbmk 12.83% 11.70% 8.74% 8.01% 7.98% 7.33%
geo mean 3.35% 3.21% 2.68% 2.52% 2.43% 2.35% geo mean 3.30% 3.13% 2.16% 2.10% 2.04% 1.97%

Parsec-2.1 benchmark

blackscholes 6.84% 5.51% 5.51% 5.23% 5.19% 5.02% blackscholes 9.28% 8.36% 7.29% 6.73% 6.74% 6.66%
bodytrack 5.10% 5.02% 5.02% 5.01% 4.24% 4.24% bodytrack 4.32% 4.31% 2.95% 2.95% 2.02% 2.02%
facesim 5.19% 5.06% 5.06% 5.03% 4.96% 4.95% facesim 4.25% 4.25% 3.01% 2.78% 2.77% 2.75%
ferret 6.44% 6.12% 6.12% 5.89% 5.13% 4.92% ferret 7.19% 6.26% 5.92% 5.01% 4.24% 3.95%
freqmine 4.47% 4.38% 4.38% 4.34% 4.25% 4.22% freqmine 3.11% 3.09% 2.87% 2.87% 2.87% 2.86%
raytrace 4.25% 4.19% 4.19% 3.93% 3.91% 3.89% raytrace 5.20% 5.17% 4.73% 4.24% 4.21% 4.03%
swaptions 4.04% 4.02% 4.02% 4.01% 3.88% 3.88% swaptions 4.84% 4.84% 4.72% 4.72% 4.72% 4.58%
fluidanimate 6.30% 6.01% 6.01% 5.25% 5.19% 4.82% fluidanimate 9.87% 9.01% 7.56% 6.89% 6.87% 6.55%
vips 5.62% 5.43% 5.43% 5.41% 5.36% 5.33% vips 6.27% 6.25% 3.98% 3.97% 3.95% 3.84%
x264 9.63% 9.51% 9.51% 9.48% 9.37% 9.29% x264 3.44% 3.41% 2.37% 2.37% 2.37% 2.33%
canneal 11.83% 9.47% 9.47% 8.78% 7.45% 6.92% canneal 14.79% 13.11% 4.92% 4.11% 3.74% 3.27%
dedup 6.29% 6.22% 6.22% 5.24% 4.11% 4.08% dedup 7.25% 7.24% 3.77% 3.05% 2.62% 2.62%
streamcluster 11.74% 9.97% 9.97% 9.16% 9.04% 8.18% streamcluster 13.93% 12.49% 2.76% 2.37% 2.33% 2.05%
geo mean 6.34% 5.94% 5.94% 5.65% 5.30% 5.16% geo mean 6.40% 6.12% 4.09% 3.77% 3.53% 3.39%

TABLE 5: The impact of different optimization levels in SafeHidden when applied to enhance SS and OCFI to protect SPEC
CPU2006 and Parsec-2.1 benchmarks. Table 4 shows which optimizations are enabled among the different optimization levels.
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Fig. 10: Disk I/O and JavaScript engine performance overhead
(geo mean) brought by SafeHidden with different optimization
levels when applied to the SS and OCFI defenses.

6.3.3 The Impact on Disk I/O Benchmarks
Figure 10 shows the performance overhead brought by
SafeHidden with different optimizations when applied to
enhancing the SS and OCFI defenses to protect the Bon-
nie++ benchmark. We can see that every optimization could
bring performance improvement for SafeHidden. Similar to
Nginx, since the Bonnie++ benchmark is the single-threaded
program and trigger fewer number of randomization of safe
areas, the optimizations do not achieve significant perfor-
mance improvement compared to Apache.

6.3.4 The Impact on JavaScript Engines
Figure 10 shows the performance overhead brought by Safe-
Hidden with different optimizations when applied to en-
hancing the SS and OCFI defenses to protect SpiderMonkey.
We can see that every optimization could bring performance
improvement for SafeHidden and the tendency is similar
to Apache due to SpiderMonkey is also a multi-threaded
application. Compared with Apache, we can also see that
the optimization level -O4 achieves few performance im-
provement compared to the -O2. This is because there is
few I/O-related operations in the Kraken benchmark and
the number of re-randomizations is much less than Apache.

7 DISCUSSION

Resilience to attacks. SafeHidden is resilient to all known
attacks against safe areas. Variants of existing attacks would
also be prevented: (1) The attacker may try to fill up
the address space quickly by using the persistent allocation
oracle [13] to avoid SafeHidden from creating too many
trap areas. But as SafeHidden sets an upper limit for the
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total mapped memory regions, such attacks are prevented;
(2) The attacker could exploit the paging-structure caches to
conduct the side-channel analysis. However such attacks
will also trigger TLB misses, which will be detected by
SafeHidden. Although it is difficult to prove SafeHidden
has eliminated all potential threats, we believe it has con-
siderably raised the cost of attacks in this arms race.

Porting SafeHidden to the ARM platform. Porting Safe-
Hidden to the ARM platform needs to re-implement some
architecture-specific mechanisms, including the thread-
private mechanism and the TLB miss intercepting mech-
anism. For the thread-private mechanism, we can use the
Stage-2 page table in ARM virtualization technique to re-
place the EPT in Intel virtualization technique; For the TLB
miss intercepting mechanism, there are still reserved bits
in PTEs of ARM, but setting these bits will not trigger
any exception during the hardware page table walk. ARM
supports disabling the hardware page table walk but it
will introduce high-performance overhead due to all TLB
misses in the protected process will trigger the translation
exception. So one feasible method is using the present bit
instead of the reserved bits. We could clear the present bits
of all PTEs in safe areas, so the page fault exception will
be also triggered during the page table walk. Note that
configuring the present bit to intercept the TLB misses could
cause kernel crashes since the kernel performs active checks
of the spresent bit in a lowest-level PTE in multiple cases.
For instance, when a process is forking a new child process,
the kernel checks the present bit in the process’s lowest-
level PTEs. To avoid such side-effects, we need to modify
the kernel source code to cooperate with SafeHidden. This
is also the reason why we choose the reserved bits in
SafeHidden on the X86 platform — in contrast to the present
bit check, the kernel does not perform any check against
lowest-level PTEs’ reserved bits.

8 RELATED WORK

Other hardening the IH works. Some defense mechanisms
have been proposed to harden information hiding. Shuf-
fler [6] mentioned that defeats probing attacks by moving
the location of its code pointer table (i.e., the safe area) con-
tinuously. But this method only blocks attacks from Vector-
1. For example, using Vector-2, persistent attacks could
always succeed. ProbeGuard [36] detects probing attacks
that try to de-randomize information hiding and patches
the vulnerable code to prevent probing by exploiting the
vulnerability repeatedly. This method cannot block all attack
vectors, e.g., clone-probing attacks and cache-based side-
channel attacks. Different from Shuffler and ProbeGuard,
SafeHidden blocks all existing attack vectors against IH.

Protecting the metadatas of CFI. CFI is an important
defense against code reuse attacks [37]. A CFI mechanism
stores control-flow restrictions in its metadata. Like other
types of safe areas, the metadata of CFI mechanisms needs
to be protected. However, many CFI metadata only needs
the write protection without concern about its secrecy. For
example, there is no need to use IH to protect the pure label
based CFI due to the labels are stored in the unwritable code
section. Therefore, these CFI mechanisms do not need IH.

In contrast, some CFI metadata is writable, as it needs to be
dynamically updated [21], [38], [39], [40], and others need to
be kept as secrets [3], [17], [41], [42]. These CFI mechanisms
must protect their metadata either by memory isolation [21],
[38], [39], [40], [41] or IH [3], [17], [42]. SafeHidden can
be applied to improve the security of IH for these CFI
mechanisms.

Code re-randomization. Many researchers studied how to
use the code re-randomization technique, which randomizes
the application code on-the-fly, to mitigate the memory
disclosure attacks, such as the JIT-ROP attack [43]. If code
is re-randomized between the time that it is leaked and
the time a payload is invoked, the attack fails because
the gadgets do not longer exist. So, the time to perform
the code re-randomization is the key factor to the secu-
rity. OS-level ASR [44] and Shuffler [6] choose to per-
form re-randomization at a fixed time interval; TASR [45],
ReRanz [5], and RuntimeASLR [46] choose to perform re-
randomization at some syscalls that could leak the informa-
tion. Although SafeHidden is proposed to protect the safe
area (the secret data) not the code, it is orthogonal to these
code re-randomization works.

Tracking TLB misses. Intel performance monitoring units
(PMU) [15] can be used to profile the TLB miss, but it is
not precise enough. In contrast, setting reserved bits in PTE
can help to track the TLB miss precisely. Some works had
used this feature for performance optimization [47], [48],
[49]. SafeHidden extends this method to detect side-channel
attacks against the safe areas, which is the first time to our
best knowledge such a feature is used in security.

Trap areas as security defenses. Booby-traps [50] first
proposes to defeat code reuse attacks by inserting the trap
gadgets in applications. CodeArmor [51] inserts the trap
gadgets into the virtual (original loaded) code space. To
protect the secret table’s content against probing attacks,
Readactor++ [52] inserts trap entries into the PLT and vtable,
and Shuffler [6] inserts the trap entries into its code pointer
table. To defeat the JIT-ROP [43] attacks, Heisenbyte [53]
and NEAR [54] propose to trap the code after being read.
Different from these works, SafeHidden uses the trap to
capture the probing attacks against IH.

9 CONCLUSION

This paper presented a new IH technique, called Safe-
Hidden, which is transparent to existing defenses. It re-
randomizes the locations of safe areas at runtime to prevent
attackers from persistently probing and inferring the mem-
ory layout to locate the safe areas. A new thread-private mem-
ory mechanism is proposed to isolate the thread-local safe
areas and prevent the adversaries from reducing the ran-
domization entropy via thread spraying. It also randomizes
the safe areas after the TLB miss event to prevent the cache-
based side-channel attacks. The experimental results show
that our prototype not only prevents all existing attacks
successfully but also incurs low performance overhead.
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