
RERANZ: A Light-Weight Virtual Machine to Mitigate
Memory Disclosure Attacks

Zhe Wang1,2, Chenggang Wu1 ∗, Jianjun Li1, Yuanming Lai1,
Xiangyu Zhang3, Wei-Chung Hsu4, Yueqiang Cheng5

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences,
2University of Chinese Academy of Sciences, 3Dept. Computer Science, Purdue University,

4Dept. Computer Science & Information Engineering, National Taiwan University, 5Acetti Software
1{wangzhe12, wucg, lijianjun, laiyuanming}@ict.ac.cn, 3xyzhang@cs.purdue.edu, 4hsuwc@csie.ntu.edu.tw,

5ycheng@acettisoftware.com

Abstract
Recent code reuse attacks are able to circumvent various ad-
dress space layout randomization (ASLR) techniques by ex-
ploiting memory disclosure vulnerabilities. To mitigate so-
phisticated code reuse attacks, we proposed a light-weight
virtual machine, RERANZ, which deployed a novel contin-
uous binary code re-randomization to mitigate memory dis-
closure oriented attacks. In order to meet security and per-
formance goals, costly code randomization operations were
outsourced to a separate process, called the “shuffling pro-
cess”. The shuffling process continuously flushed the old
code and replaced it with a fine-grained randomized code
variant. RERANZ repeated the process each time an adver-
sary might obtain the information and upload a payload. Our
performance evaluation shows that RERANZ Virtual Ma-
chine incurs a very low performance overhead. The security
evaluation shows that RERANZ successfully protect the Ng-
inx web server against the Blind-ROP attack.

Categories and Subject Descriptors D.3.4 [Software]:
Processors—Code generation; Translator writing systems
and compiler generators; D.4.6 [Operating Systems]: Secu-
rity and Protection

General Terms Design, Security

Keywords RERANZ, virtual machine, memory disclosure,
re-randomization, shared memory

∗ To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

VEE ’17, April 08 - 09, 2017, Xi’an, China

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4948-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050748.3050752

1. Introduction
Memory corruption techniques [42] allow adversaries to hi-
jack a program’s control flow. This has created a war on
computer security where defensive researchers mend loop-
holes in code as offensive researchers come up with new at-
tacks. This war has been an arms race between offense and
defense in the past decades.

Data execution prevention (DEP) protection mechanism
was proposed to prevent code injection attacks [31]. How-
ever, the adversaries adapted quickly and evolved to code
reuse attacks [12, 13, 20, 34], such as Return-oriented Pro-
gramming (ROP) [34]. Instead of injecting code, they used
the existing code fragments (called gadgets) residing in the
victim application’s address space. To mitigate code reuse
attacks, Address Space Layout Randomization (ASLR) [43]
had been proposed. It randomizes the base address of exe-
cutable modules thereby making the gadgets’ locations hard
to guess. In order to further raise the bar of cracking the code
layout, several fine-grained ASLR [8, 17, 24, 28, 29, 32, 44]
techniques with high randomization entropy have also been
introduced to enhance ASLR. Unfortunately, the adversaries
invented new memory disclosure attacks [41] that leaked the
target memory content directly on-the-fly and then perform-
ing code reuse attacks. To mitigate such attacks, runtime
code randomization or re-randomization techniques [10, 14,
19, 30, 45], which randomize application code on-the-fly,
have also been proposed recently.

Learning from the war, we note that although the new
defense techniques cannot guarantee absolute security for a
system, they could raise the difficulty for attackers. There
are only a small number of defense techniques, such as DEP
and ASLR, that are actually deployed in practice. Deployed
techniques are cost-effective, can be applied to executables
directly, and preserve the application binaries’ common fea-

143

tures such as self-referencing code1, multi-threading and
multi-processes. Recent re-randomization enhanced ASLR
further raises the bar for attackers. Even if the attackers are
aware of memory disclosure vulnerabilities, they can hardly
launch code reuse attacks. However, these techniques suf-
fered from serious deployment issues either because they re-
quire the source code to be available (so they are not ap-
plied to commercial or legacy applications) [10, 14, 19, 45],
they incur unacceptable performance overhead (e.g., over
1000-fold) [30], or they compromised the binaries’ common
features (e.g., they cannot support self-referencing code). In
this paper, we tried to address these three problems to ease
the deployment of ASLR with runtime re-randomization.
We present a novel, light-weight virtual machine, RERANZ,
which continuously randomizes a binary executable together
with dynamically loaded libraries. RERANZ not only per-
forms re-randomization at fine granularity with low over-
head, but also retains the binaries’ common features.

RERANZ protects the subject process’s code by setting
its permission to read-only and executes the code through
a Code Cache which is a software controlled memory re-
gion containing re-translated/randomized code. To random-
ize code efficiently and preserve the DEP protection mecha-
nism, we devise a shared memory based shuffling mechanis-
m. We set up a dedicated process, called the “shuffling pro-
cess”, to perform randomization. The Code Cache is shared
between the main process and the shuffling process. The
shuffling process generates several code variants periodical-
ly in its memory space. At any given time, there is only
one code variant mapped to the shared Code Cache. When
the protected process needs re-randomization, another code
variant is mapped to the Code Cache, replacing the curren-
t one. Re-randomization is triggered when an input system
call follows some output system calls since last randomiza-
tion [10]. To reduce the overhead of I/O intensive applica-
tions (e.g., web servers), we also develop a trade-off method
which could be a user controllable option. Because the code
layout is changed continuously, re-randomization needs to
update all code position related pointers when performing
re-randomization. That is a prominent challenge and previ-
ous works did not solve it well. One key difference of R-
ERANZ is to not mutate code pointer values in code vari-
ants. Instead, these pointers are dynamically translated to the
randomized locations when they are used to change control
flow. More importantly, RERANZ is carefully designed so
that the translation cannot be reused by the adversaries.

In summary, the work makes the following contributions:

• We proposed a new light-weight virtual machine, R-
ERANZ, to mitigate memory disclosure attacks. It has
been successfully tested on commercial applications.

1 Self-referencing code usually treat the code pointers as data pointers and
use these data pointers to read the content. For example, libunwind library
[4] uses the return address to read its own code and checks whether the
instructions are PLT encoded.

0x400394: pop %rdx; retq

0x4005a3: xor %rsi, %rsi ; retq

0x4004b5: pop %rdi; retq

0x4005b2: mov %eax, $0x3b; syscall

execve(“/bin/sh”, NULL, NULL)

0

saved %rbp

pop %rdi; xor %rsi, %rsi;
pop %rdx; mov %eax, $0x3b;
syscall;

28*’A’

“/bin/sh”

&binsh

0x4004b5

0x4005a3

0x400394

0x4005b2

Gadgets in Binary

…

…
 …

Dynamic Execution Flow

stack gro
w

th

ROP
return address

char *buf[20]

Figure 1: Return-Oriented Programming to start a shell.

• Using an innovative shuffling process to generate and
hide code variants in its memory space in parallel and
modify the protected process’s page table to switch the
new code variants.

• Re-randomization is achieved without requiring mutating
code pointers, which is critical for the practicality of
the technique. While this is enabled by dynamic address
translation, the translation itself may introduce security
risks, RERANZ invents new methods to lower such risks.

• An improved feedback based re-randomization strategy
is proposed and implemented. Compared with the TAS-
R’s strategy [10], the new method achieves much better
performance on I/O intensive applications.

• The RERANZ virtual machine is evaluated on a Lin-
ux/X86 64 platform. Our evaluation shows that RERANZ
retains the full functionalities of the original applica-
tion. The performance evaluation shows that RERANZ
incurs 9.7% overhead for the multi-threaded Parsec-2.1
[9] benchmark, 6% for SPEC CPU2006 [23], and 10%
for Apache/Nginx web servers [1, 5] running in the batch
mode. The security experiments show that the prototype
prevents the Blind ROP attack [11] successfully.

The rest of the paper is organized as follows. Section
2 reviews the related work and gives our motivation. Sec-
tion 3 explains the threat model under which RERANZ op-
erates. Section 4 presents the design and implementation of
RERANZ and Section 5 describes some practical challenges
and some optimizations. Section 6 provides the security and
performance evaluation and Section 7 discusses RERANZ’s
security design and our planned future work.

2. Background and Related Work
2.1 Return-Oriented Programming (ROP)
ROP attack [34] is used to hijack the intended execution flow
of an application and performs malicious operations with-
out injecting any new code. Figure 1 shows an ROP attack
that spawns a command shell. It uses a stack buffer over-
flow vulnerability to write data (called payload) beyond the
bound of the buffer and then overwrite the critical control-
flow information (e.g., return address). The payload consists
of pointers, where each pointer refers to a small code piece
(called gadget). Each gadget consists of several instructions
that ends with a ret instruction. Once a gadget has executed

144

and the top of the stack points to the address of the next gad-
get, the exploit continues. After several years’ developmen-
t, several evasive variants of ROP had been invented. They
could use diverse gadgets (e.g., ending with indirect jumps
and indirect calls) to build up the payload [12, 13, 20].

2.2 Load-time Address Space Layout Randomization
Load-time ASLR had been proposed to mitigate code reuse
attacks [43] by making the addresses of gadgets unpre-
dictable at load-time. Module-level ASLR is widely de-
ployed. But adversaries could also use several leaked point-
ers (e.g., the base address of libraries) to relocate the gadget-
s’ address in the payload. So several fine-grained random-
ization techniques further enhanced ASLR by permuting the
location of functions [28] and randomizing the location of
code pages [8], basic blocks [17, 29, 32, 44] or instructions
[24]. It is difficult for adversaries to relocate (through sev-
eral leaked addresses) or guess (through brute force attacks
[35, 39]) the gadgets’ location under these techniques.

2.3 Memory Disclosure Attacks
Although load-time randomization techniques ensure that
the code layout will be different every time a process is
running, the code layout will remain unchanged throughout
the execution. Therefore, new memory disclosure attacks
[41] appeared, such as JIT-ROP [40], which can circumvent
these protections without requiring precise knowledge of
the code layout. Instead, it can use any code pointers (e.g.,
return addresses) to implement the attack. Based on the
leaked pointers, JIT-ROP discloses the memory contents by
recursively searching for code pointers and then uses the
discovered code pages to generate the ROP payload on-the-
fly. JIT-ROP gathers the memory pages without crashing the
victim application.

The threat of memory disclosure is not limited to JIT-
ROP. Another popular attack is the clone-probing attack,
such as Blind ROP [11], which focus on daemon web server-
s. A daemon web server consists of a daemon process and
multiple worker processes forked by the daemon process.
If a worker process crashes, a new worker process will be
forked by the daemon process. Since the memory layout of
worker processes is the same as the daemon process’, adver-
saries can repeatedly probe the worker processes and then
analyze the characteristics of the corresponding responses
(e.g., crash, block, closed or stays open) to remotely obtain
information of the memory layout.

2.4 Previous Efforts of Re-randomization
Re-randomization, which randomizes the application code
on-the-fly, is not a new idea. Many researchers had noted that
re-randomization can mitigate memory disclosure attacks. If
code is re-randomized between the time that it is leaked and
the time a payload is invoked, the attack fails because the
gadgets do not longer exist.

There are two main challenges to actually deploy effec-
tive re-randomization. (a) All code location related pointers
need to be updated during code re-randomization. Hence,
precisely identifying and tracking such pointers during ex-
ecution is a prominent problem. (b) At what time and how
frequent should re-randomization be performed is crucial to
both efficiency and security.

To address the first challenge, all recent re-randomization
techniques require the compiler’s assistance. OS-level ASR
[19] uses the LLVM [3] to instruments the IR to track the
code pointers. TASR [10] modifies the GCC compiler to col-
lect the location information of code pointers. Remix [14],
RuntimeASLR [30] and Shuffler [45] need to recompile the
source code with special options to obtain the initial code
pointers (e.g., Remix and Shuffler need ‘-Wl, -g, -gdwarf2,
-fno-omit-frame-pointer, -z initfirst’ options to provide sym-
bols and Dwarf unwind information. RuntimeASLR needs
the ‘-PIE’ or ‘-fPIC’ options). Specially, Shuffler replaced
the code pointers with the indices of a global table of code
pointers. When performing re-randomization, it only relo-
cated the global table. Because the semantics of code point-
ers have been changed, the self-referencing code cannot
be supported. Besides Shuffler, Remix and OS-level ASR
also cannot support self-referencing code due to its fine-
grained re-randomization (destroying the original code lay-
out deeply). Although RuntimeASLR needs few changes in
the compile options, it utilizes dynamic binary instruction
to track code pointers that incurs very high overhead (over
1000-fold of application execution time).

To address the second challenge, OS-level ASR, Remix
and Shuffler choose to perform re-randomization at a fixed
time interval. Because the adversaries could complete the
attack between the adjacent randomizations, this randomiza-
tion strategy is not secure enough. RuntimeASLR only per-
forms the re-randomization when the parent process fork-
s a child process. So it cannot prevent the JIT-ROP attack.
TASR proposed a different re-randomization strategy: (a) re-
randomize before any input system call that following one or
more output system calls; (b) re-randomize before fork and
vfork system calls. In TASR, any output system call may be
used to leak the information (i.e., pointers and code content)
and any input system call may be used to upload a payload.
So strategy (a) re-randomizes before the adversary uploads
a payload to invalidate the gadget addresses in the payload.
Strategy (b) is used to prevent clone-probing attacks. How-
ever, based on this re-randomization strategy, TASR could
cause prohibitively high overhead for I/O intensive applica-
tions due to excessive re-randomization.

Re-randomization needs to re-randomize all codes in
the victim applications’ memory space. Besides Shuffler
and Remix, most of re-randomization techniques could do
that. Shuffler did not re-randomize the loader library and
Remix only re-randomized part of functions that had enough

145

Static
Analyzer

Shuffling Process

Code Variant1

Kernel Module
OS

Randomiza-
tion Files

Code Variant1

Main Code Cache
Code Variant1

Library

Lib Code Cache

Code Variant1

Protected Process

Shared Memory

Main ProgramCommunication

Code Generator

Code Variant2

Code Variant2

Static Program
Binary

1

2

6

3

3

4

5

Figure 2: Architecture overview of RERANZ.

paddings. So the adversaries may have chance to use these
un-randomized codes to conduct memory disclosure attacks.

2.5 Motivation for RERANZ

Recent re-randomization techniques have not been deployed
in practice due to four issues: (a) They may require source
code to be available so that they could not be applied to
commercial or legacy applications; (b) They involve high
performance overhead; (c) They do not preserve common
application binary features, such as self-referencing code;
and (d) They do not re-randomize all codes. In this paper,
RERANZ is specifically targeted at addressing these issues
to make the deployment of re-randomization practical.

3. Threat Model and Assumptions
In our threat model, the adversary has the following two a-
bilities. (a) Read and write arbitrary memory locations in the
victim process; (b) Ability to crash the worker process of a
daemon repeatedly, but not crash a victim process without
self-rebooting functionality. RERANZ focuses on preventing
code reuse attacks from adversaries with the above capabil-
ities. Attacks that exploit data layout [25, 37] to leak infor-
mation implicitly and side-channel attacks [22, 26, 27, 38]
are out of our scope. We also assume that the target system
is equipped with the following protections which are very
popular in existing commercial systems.

No Executable-and-Writable Memory All memory pages
are either marked as executable or writable, thus preventing
code injection attacks.

Load-time ASLR Load-time ASLR is the first step to shuf-
fle the layout of a victim process. In this work, we only ran-
domize code and data segments that are supposed to be pro-
tected by the load-time randomization.

4. Design and Implementation
4.1 System Overview
The overall architecture of RERANZ is depicted in Fig. 2. To
show RERANZ is practical on real executables, we develop
and deploy our system on the Linux/X86 64 platform. R-
ERANZ begins by analyzing the executable and its libraries,
and then generate a randomization file for each module in
an Offline Static Analysis Phase. This phase is used to ac-
celerate randomization at runtime. It is optional and can be

BB1

BB2

BB3

BB4

call rax

ret

Addr1:

Addr2:

Addr3:

Addr4:

STACK (RW):

Addr3

…

Addr5:

CODE (RO):

BB1

BB3

target
+off_c

CODE CACHE (RX):

Jump to Addr7Addr1+off_c:

Addr2+off_c:

Addr3+off_c:

Addr4+off_c:

Jump to Addr8

Jump to Addr9

Jump to Addr6

target
+off_c BB2

BB4Addr6:

Addr7:

Addr8:

Addr9:

Trampolines:

Addr1+off_c:

Addr2+off_c:

Addr3+off_c:

Addr4+off_c:

…

Addr5-off_s:

1

2

direct control flow

indirect control flow

data flow

RRAT: Real Return Address Table
BB : Basic Block

RW : Readable and Writable
RO : Read-Only
RX : Readable and eXecutable

a b c

Note: STACK (RW):

Addr3
…

Addr5:

CODE (RO):

BB1

BB3

CODE CACHE (RX):

Jump to Addr6

target
+off_c

BB2

BB4Addr6:

Addr7:

Addr8:

Addr9:

Trampolines:

Addr9

…
…

RRAT (RW):

3

7

4

6

5

BB1

BB2

BB3

BB4

call rax

ret

Addr1:

Addr2:

Addr3:

Addr4:

CODE (RX):

STACK (RW):

Addr3

…

Addr5:

Figure 3: Three memory layouts of the victim process with
different protection strategies. (a) shows the victim pro-
cess without protection. (b) shows the basic method and (c)
shows the enhanced strategy.

integrated into the second phase. It disassembles the exe-
cutable, partitions it into basic blocks and then transforms
the instructions in each basic block (¶). The result of ran-
domized blocks is stored in a randomization file.

The task of the Load-time Initialization Phase is to al-
locate the Code Cache, and generate the first code variant
into it. We outsource the costly re-randomization operation
to a separate user space process, called the “shuffling pro-
cess”, which launches on a different core (·). This reduces
the impact of the latency introduced by the randomization
work. RERANZ uses a kernel module to monitor the initial-
ization of the protected process’s memory layout and allo-
cate the Code Cache for each module. Meanwhile, the orig-
inal code region is set with read-only permission. The Code
Cache of the protected process is shared with the shuffling
process so that it can generate the code variant in the shared
space directly (¸). The code variant is generated based on
the pre-generated randomization files of all modules (¹) in
the first phase. It is randomized at the basic block granulari-
ty (i.e., basic block reordered). Based on the shared memory
mechanism, the Code Cache is given the readable and exe-
cutable permissions in the protected process, whereas it has
the readable and writable permissions in the shuffling pro-
cess. Because the Code Cache does not have writable per-
mission for the protected process, RERANZ could preserve
DEP principle throughout the entire execution.

In the Runtime Re-randomization Phase, the kernel
module monitors the normal execution of the protected pro-
cess and the shuffling process generates new code variants in
parallel. Once a specific pattern of system calls is detected
(º), the kernel module flushes the old code variants and re-
place with a new one in the Code Cache (»). This is done by
modifying the page table of the protected process to map the

146

Instruction Type Description Design

Indirect Call C-Type Jump to function entries (e.g., virtual function calls and function pointer arrays). Trampoline

Return
R-Regular Return address is pushed on the stack by call instructions. RRAT
R-Signal Return address is pushed on the signal stack by OS. RRAT
R-Exception Return address is updating dynamically (i.e., Unwind RaiseException() in C++ exception). Catch Table

Indirect Jump

J-Table Jump to use the jump table (e.g., swith/case statement). New Table
J-Function Jump to function entry (e.g., dl runtime resolve). Trampoline
J-Middle Jump to the middle of the current function (special behavior). Trampoline
J-Exception Jump to the middle of other functions (i.e., longjmp/siglongjmp). Setjmp Table

Table 1: A summary of indirect branch instructions.

Code Cache with a new code variant from the shuffling pro-
cess. By leveraging the isolation of processes, the new code
variants are hidden in the protected process’s virtual memo-
ry space. It is important that the adversaries cannot leak and
use them before they are switched in.

4.2 Two Key Design Decisions
4.2.1 Code Randomization without Tracking Pointers
Both explicit and implicit pointers to code exist in programs.
When shuffling codes, we must guarantee such pointers will
correctly point to their new locations. However, identifying
such pointers is a challenge, especially when the source code
is not available.

An important design decision is to avoid identifying and
updating code position related pointers. Instead, RERANZ
dynamically redirects the pointer (in the original code s-
pace) to its respective address in the code variant when it is
de-referenced. All code pointers in a randomized code vari-
ant remain intact by pointing to the locations in the original
code, they are merely redirected to randomized new loca-
tions. This property is required for self-referencing code.

RERANZ instruments all indirect branch instructions
(i.e., ret, indirect call and indirect jump instructions) to per-
form runtime address translation. Upon each re-randomization,
RERANZ only needs to update the address translation table.
To achieve efficient translation, RERANZ maintains a set
of trampolines in the Code Cache. As shown in Fig. 3(b),
each basic block has a corresponding trampoline located at
a place with a fixed offset off c (e.g., translations ¶·) from
the original basic block and the jump target of a trampoline is
the randomized location. When re-randomization occurs, we
only need to reorder the basic blocks in the Code Cache and
update all the trampolines and the current program counter.

Security Flaw of the Basic Design To launch an attack,
the adversaries could chain basic blocks (named useful gad-
gets), which have the corresponding trampoline, and ended
with an indirect branch instruction de-referencing the code
pointer to trampolines. Then they can use the useful gadget
addresses pointing to the original code area in the payload.
With the help of the trampolines, the gadget addresses in
the payload can be translated to the randomized locations.
If this imaginary attack turns out to be true, RERANZ fails

to protect the program. A recent randomization technique,
instruction displacement2 [29], had also noted this problem
that the adversaries could utilize the “basic block entry” gad-
gets (similar to our useful gadgets) to conduct code reuse at-
tacks. However, that work did not adopt any protection on
these gadgets, it only showed that these gadgets were infre-
quent.

Enhanced Design The root cause of the above vulnerabil-
ity is that the adversary might exploit the process of the dy-
namic code translation. We attempt to minimize such risks
through two ways: (a) Reduce the pointer de-reference op-
erations of accessing trampolines. (b) Reduce the number of
trampolines. Both approaches leave very few blocks as gad-
get candidates for adversaries to exploit.

For aspect (a), we eliminate the use of trampolines for all
rets and a subset of indirect jumps. To understand the behav-
ior of indirect branch instructions, we analyzed 1663 Linux
binaries semi-automatically and classified them in Table 1.
Ret can be classified into three types: R-Regular, R-Signal
and R-Exception. To eliminate the use of trampolines for
R-Regular, we leverage a Real Return Address Table (R-
RAT) to store the real return addresses during the execution
of call instructions and ret is transformed to load the jump
target from RRAT (as shown in Fig. 3(c)¸-¼). We also u-
tilize the RRAT for R-Signal, but it is somewhat different
in that the return address of signal handler is pushed by the
OS during delivering a signal. So the kernel module is re-
sponsible for storing the real return address in RRAT. The
return address of R-Exception is updated at runtime and this
mostly occurs in exception handling of C++ programs (i.e.,
try/catch statements). When the try statement throws an ex-
ception, Unwind RaiseException() of libgcc s.so will find
the corresponding catch statement and modify its own return
address to point to the location of the catch statement. So for
R-Exception, ret is transformed to search an catch table.
The table stores the mapping of all catch statements from

2 It moves the original basic block in a random location and erases the orig-
inal code. To maintain the original semantics of the code, the randomized
basic blocks are linked with the rest of the code by using direct jump in-
structions which are placed at the original locations.
3 Including SPEC (29), Parsec (13), Web servers (3), Browsers (3), Libraries
(19) and Shell commands (33 for text operations, 24 for file operations and
42 for others)

147

Method Description Reliability

FE-M1 Function entries recorded in (dynamic) symbol tables. High

FE-M2 Function entries recorded in relocation tables (e.g., global function). High

FE-M3 Function entries are jump targets of direct call instructions. High

FE-M4 Potential function prologs (e.g., decreasing %rsp and saving callee-saved registers). High

FE-M5

Function entries are jump targets of the direct tail call instruction. This is often occurred in the optimization of compilers.
The direct/indirect call instruction is replaced with a direct/indirect jmp instruction to reuse the caller’s stack frame. The
jmp instruction is often preceded with potential function epilogs (e.g., increasing %rsp and restoring callee-saved registers)
and some argument registers’ assignment.

High

FE-M6 Function entries are preceded with paddings (usually filled by 00H or ‘nop’ instruction in ELF). Most compilers often insert
paddings to align functions and loops to a power-of-two (often 16-byte aligned) boundary in the cache. Middle

Table 2: Methods to recognize function entries.

their original locations (extracted from .gcc except table in
binaries) to the new randomized locations. Indirect jumps
can also be classified into four types: J-Table, J-Function,
J-Middle and J-Exception. We only eliminate the use of
trampoline for J-Table and J-Exception. For J-Table, the
indirect jumps are transformed to use a new jump table that
contains all the translated addresses. The table is derived
from the original jump table by translating each value to new
randomized locations. The jump tables in the shared library
usually record offset instead of absolute address. For these
tables, the new tables contain the relocated offsets. For J-
Exception, the indirect jumps are transformed to look up a
setjmp table that stores the mapping of all original return
addresses at the callsites of setjmp()/sigsetjmp() to the new
locations. Because the tables used for R-Exception, J-Table
and J-Exception are constant for a code variant, so they can
be generated together with the variant into the Code Cache.

After the aforementioned transformation, the trampolines
are only used for the jump target basic blocks of C-Type,
J-Function and J-Middle. So for aspect (b), we need to
reduce the corresponding trampolines of other basic block-
s. From Table 1, we can see that the jump targets of C-
Type and J-Function are all function entries. We also ob-
served that J-Middle’s targets are not the target of any direct
branch instructions. So we design a conservative method that
follows control flow edges (produced by direct branch in-
structions and J-Table) from possible function entry basic
blocks (marked as requiring trampolines) to recognize intra-
procedural basic blocks (marked as not) and the exploration
is bounded by basic blocks that have been analyzed before.
The remaining basic blocks are all marked as requiring tram-
polines. Because functions are difficult to recognize in bina-
ries, we recognize function entries through methods in Ta-
ble 2. The recognized function entries through FE-M(1-5)
are more common. Because the paddings are inserted for
functions and loops, FE-M6 may mistakenly recognize the
end of a loop as a function entry. So the final classification
method is: Step 1, recognizing function entry basic blocks
through FE-M(1-5) and then following control flow edges
to classify basic blocks; Step 2, recognizing function entries
again in un-reachable basic blocks through FE-M6 and then

following control flow edges to classify basic blocks; Step
3, marking the remaining basic blocks as requiring trampo-
lines.

Proof-of-Concept The conservative classification ensures
correctness (the remaining trampolines are enough for C-
Type, J-Function and J-Middle) for two reasons: (1) Be-
cause FE-M5 recognizes direct tail calls, the function en-
tries will not exist in control flow edges. Even though FE-
M(1-6) may not recognize all function entries, the remaining
function entries will be handled conservatively at Step 3; (2)
Based on our observation of J-Middle, the jump target ba-
sic blocks will not exist in control flow edges. So its targets
will be marked as requiring trampolines at Step 3. Even if
we recognize its target as a function entry by mistake, its
targets will still be marked as requiring trampolines. But this
method may recognize additional basic blocks as requiring
trampolines, which exposes opportunities for adversaries to
exploit. However, such extra basic blocks are rare, and our
security evaluation shows that all the remaining useful gad-
gets are very difficult to launch a meaningful code reuse at-
tack due to the lacking of the key types and having strong
side effects (shown in Section 6).

Because most trampolines are eliminated, there are many
holes left in the region of trampolines. To reduce the size of
the code variant, the randomized basic blocks and trampo-
lines are interleaved instead of separated actually.

4.2.2 Time to Perform Re-randomization
The most effective re-randomization strategy so far is TASR
[10]. However, TSAR may cause prohibitively high over-
head for I/O intensive applications due to frequent re-
randomization. Our study shows that leaked information
through output system calls are code pointers and code con-
tents. Code pointers can be used to relocate the gadget ad-
dresses in payload or leak the code pages. Because the code
is randomized with fine granularity in RERANZ, the adver-
saries could not use these pointers to relocate the payload
(similar to load-time fine-grained randomization). So we
only concerned about the leakage of code contents.

148

Figure 4: A basic block and its RelocatableBB.

To address the performance problem, we consider a trade-
off that monitors the amount of data transmitted by output
system calls to reduce the frequency of re-randomization.
The intuition is that the sequence of output system calls be-
fore an input system call may not transmit a large amount
of data. The amount of leaked code is hence insufficient to
launch code reuse attacks. ROPecker [15] had observed that
the adversary has a very low possibility to launch a mean-
ingful code reuse attack if the size of executable code is s-
maller than 20KB. Inspired by this observation, we monitor
the amount of transmitted data by output system calls and
re-randomize when the accumulated amount exceeds a cer-
tain threshold. Because recognizing the code contents in the
transmitted data on-the-fly is a time consuming job, we con-
servatively treat all transmitted data as potential code con-
tents. Our re-randomization strategy is described as follows:
(1) re-randomization happens upon executing an input sys-
tem call and the accumulated amount of leaked data (by the
preceding output system calls) has exceeded a certain thresh-
old; (2) re-randomize before any fork/vfork/clone4 system
call. Note that the amount of leaked data is reset every time
re-randomization is performed. With a larger threshold, we
obtain lower security but with lower overhead. So it is a
trade-off for users to consider.

4.3 Offline Static Analysis Phase
In this section and the following sections, we will discuss the
individual phases in the workflow of RERANZ.

In the first phase, a static analyser searches for the li-
braries required by a given program and then analyzes the
individual modules through the following five steps: (1) Dis-
assemble the binary; (2) Extract some tables as in Table 1;
(3) Partition the code into basic blocks; (4) Identify the ba-
sic blocks that require trampolines as we discussed in Sec-
tion 4.2.1; (5) Transform instructions for randomization. The
first three steps are similar to existing works [32, 44]. Step
4 has been described in the preceeding subsections. So we
shall focus on the last step here.

4 Besides fork and vfork, the program could also use the clone system call
with ‘CLONE VM’ flag to start a new process that is missed in TASR.

Figure 5: Example of Position-Independent Code.

4.3.1 Generate Relocatable Basic Block
For each basic block, RERANZ generates a RelocatableBB
that contains a modified basic block followed by a relocation
table that records the addresses that need to be replaced dur-
ing randomization. After randomization, only the modified
basic block is copied to the Code Cache and relocated based
on the relocation table. Figure 4 shows an example of Relo-
catableBB. In the original basic block, the address ‘0xbf1d’
represents the offset relative to the header of the binary. A di-
rect jump is added in the RelocatableBB to link up with the
fall-through basic block. The relocation table contains mul-
tiple entries, each for an address in the basic block that re-
quires relocation during randomization. Each entry contain-
s the type (Column “Type” in Fig. 4), the relative position
of the address in modified basic block (Column “RelaPos”),
the size of the address (Column “Size”), and the informa-
tion to compute the new value (Column “Addend” and “Val-
ue”). RERANZ has eight relocation types related to the direct
branch instruction, position-independent code (PIC), RRAT,
trampoline, return address and three new tables in Table 1.
The meaning of ‘Addend’ and ‘Value’ depends on the relo-
cation type. Due to the space limitation, we only introduce
the ‘BRANCH’ type in Fig. 4: the relocated jump offset of
‘ja’ = the position of RelocatableBB ‘0xbf63’− the position
of RelocatableBB ‘0xbf1d’ − ‘0x11’.

We also illustrate the transformation of PIC and instruc-
tions that related to RRAT and trampolines.

Position-Independent Code (PIC) There are two different
implementations: (1) using “callnext; pop %reg” pattern to
obtain the current address (mostly occurred on IA32 platfor-
m); (2) using the register %rip directly (only occurred on
X64 platform shown in Fig. 5). Since RERANZ does not
shuffle data locations and preserves the original code area,
it only needs to ensure the transformed instruction yields the
same data/code address as the original. Because the stack
stores the original return address, we do not need to handle
the first implementation. To handle the second case efficient-
ly, RERANZ should make sure that the offset between the
original code and the code variant is within ±31bits so that
RERANZ could put the displacement of the memory operand
in the relocation table and then relocate it during randomiza-
tion.

Indirect Jumps and Calls J-Function and J-Middle are
transformed to use trampolines. As shown in Fig 6(a), the
indirect jump is redirected to the corresponding trampoline
by adding a fixed offset. Because the ‘add’ instruction will

149

Figure 6: Example of Position-Independent Code.

change the %eflag register, the control flow may be changed
if the following instructions depend on %eflag. However,
there is no instruction that uses %eflag prior to defining it
within a function, so it is safe to change %eflag if the jump
target is a function entry. When the jump target is not a func-
tion entry (handle the indirect jumps that not located in PLT
actually), RERANZ uses ‘pushf ’ and ‘popf ’ instructions to
protect %eflag before and after the ‘add’ instruction. Besides
updating the RRAT, indirect calls are similarly transformed
to use trampolines. So detailed discussion is elided.

Direct Calls and Returns These instructions are handled
by RRAT. To accelerate the access to RRAT, RRAT is de-
signed to be indexed by a linear transfer function on the %r-
sp register. As shown in Fig. 6(b), RRAT is placed at a fixed
offset from the original stack. If the top of stack is a return
address, we can use the memory operand -$offset(%rsp) to
access the corresponding real return address in RRAT (¶).To
prevent leaking of the RRAT’s location, we leverage the %gs
segment register to hide RRAT. The %gs register points to an
entry in the Global Descriptor Table (GDT) which contains
the real address. In particular, we use %gs:$addend(%rsp)
to access RRAT (·).The kernel module is responsible for
setting %gs at the start-up time of the protected process. Al-
though there is no pointers that point to the RRAT, it is possi-
ble that the adversaries might use recent techniques [18, 21]
to probe the locations of the RRAT linearly without crash-
ing the program. In order to prevent from such probing, we
placed two guard pages (before and after the RRAT) here
to prevent from probing RRAT’s location. As shown in Fig.
6(a), a direct call is transformed to five instructions (before
any optimization). The first two instructions store the real
return address and the following two instructions push the
original return address on the stack. We could reduce the
number of instructions, if the positions of the original code
area and the Code Cache are both lower than 4G. Ret is trans-
formed to use the real target in RRAT.

4.4 Load-time Initialization Phase
We design a kernel module to monitor the start-up of the
protected process and allocate Code Cache for each module.

Kernel Module

Shuffling Process Protected Process

Need re-rand?2

Stack (RW)

Code Cache (RX)

Original Code (RO)

Heap (RW)

RRAT (RW)
Code Variant1 (RW)

Code Variant2 (RW)

RRAT (RW)

…Q
U

EU
E

Update RRAT & PC5

System
Call

“Re-rand” mesg with current PC

Map CC to CV23

Resume to run7

“Done” mesg
with new PC

Return
to user

1
4

6

3

8

Figure 7: The runtime re-randomization process. The CC
is short for the Code Cache, the CV is short for the Code
Variant and the PC is short for the Program Counter.

To achieve this, the kernel module modifies the system call
table to intercept a set of system calls.

Kernel Module Monitoring The kernel module intercepts
the execve system call to monitor the start-up of a protect-
ed process. When the protected process is started, the kernel
module allocates RRAT for the main stack and two Code
Caches for the main program and ld-linux.so. Meanwhile,
the kernel module starts a corresponding shuffling process
and shares these two Code Caches and RRAT. The kernel
module also monitors the process’s library loading by in-
tercepting the mmap system call. It allocates and shares the
Code Cache for each module. In this phase, once the ker-
nel module detects a new module, it will protect the original
code region and send an ‘Init’ message5 to the shuffling pro-
cess to generate this module’s variant into the corresponding
Code Cache. The entry of protected process is relocated to
the randomized location and the following execution contin-
ues in Code Cache naturally.

Shuffling Process Initialization When the shuffling pro-
cess starts, it establishes the socket connection with the ker-
nel module immediately. Once it receives an ‘Init’ message,
it starts a child thread to generate N code variants for the
corresponding module. The workflow of generating a code
variant is the following. (1) Read the corresponding random-
ization files; (2) Place the trampolines; (3) Place all modified
basic blocks in RelocatableBBs, new jump tables, setjmp ta-
ble and catch table at random locations; (4) Relocate the ba-
sic blocks, trampolines and tables.

4.5 Runtime Re-randomization Phase
This phase performs re-randomization routinely based on
our triggering policy (mentioned in section 4.2.2). As men-
tioned before, the kernel module intercepts three input-like
system calls (i.e., fork, vfork and clone) and a set of input
system call (i.e., read, pread64, readv, recvfrom, recvms-
g, preadv and mq timedreceive) and output system call

5 Using Netlink socket to communicate between kernel and user spaces.

150

(i.e., write, pwrite64, preadv, sendto, sendmsg, pwritev and
mq timedsend). Each time the protected process invokes any
of these system calls (¶ in Fig. 7), the kernel module de-
termines if re-randomization shall be performed (·). If so,
the kernel module modifies the protected process’s page ta-
ble so that its Code Cache is mapped to a new code variant
from the shuffling process (¸). And then the kernel mod-
ule sends a ‘Re-rand’ message to the shuffling process with
the current program counter (¹). Once the shuffling process
receives this message, it updates the program counter and
the RRAT and then discards the old code variant (º). Af-
ter finishing these operations, the shuffling process sends a
‘Done’ message to the kernel module with the new program
counter (»). When the kernel module receives this message,
it finishes executing the current system call and resumes the
execution at the new location (¼½).

5. Challenges and Optimization
Multi-threading Since threads share the same address s-
pace but have their own private stacks, threads use the same
code variant but have their own RRATs in RERANZ. There-
fore, we only launch one shuffling process for all threads.
The kernel module intercepts the mmap system call to cap-
ture the creation of a thread’s stack6 and then allocates the
respective RRAT. The kernel module tracks I/O system calls
among all threads. If an input system call of a thread triggers
re-randomization, RERANZ pauses all threads, maps a new
code variant and updates all RRATs and program counters.

Multiple Processes Multi-processed programs usually lever-
age shared memory regions to transmit data between pro-
cesses. If the adversary uploads a payload to a process’s
shared memory region, the payload may be executed by
other processes. So it is necessary to re-randomize all
processes when any of the processes need to perform re-
randomization. So the handling is similar to multi-threading
and all processes share the same code variant to reduce the
management difficulty of code variants. The kernel module
tracks the I/O system calls for the entire process group. In
fact, the kernel module monitors all processes that inherit
the initial memory layout instead of the process group. This
is because a child process may use system calls (e.g., setsid)
to switch to another process group.

Linux Signals In Linux, if a process has previously reg-
istered a signal handler, the handler routine will be execut-
ed when the signal is thrown. In RERANZ, the location of
the registered handler is not in the executable Code Cache.
To address this problem, the kernel module intercepts the
sigaction and signal system calls to register the location of
randomized handler. In addition, the kernel module is also
responsible for storing the randomized location of the re-
storer routine (i.e., sigreturn) in RRAT (mentioned in section
4.2.1). During re-randomization, the location information of

6 It is allocated by the mmap system call with ‘MAP STACK’ flag.

handler and restorer recorded in kernel will be updated. The
signal stack exists on the current stack by default. Hence the
call/ret instructions in the handler can use the corresponding
RRAT. However, Linux also allows a process to use its own
signal stack by using the sigaltstack system call. To ensure
the correctness of call/ret instructions in randomized han-
dlers, the kernel module allocates a RRAT for each signal
stack by intercepting the sigaltstack system call.

Dynamic Library Loading At runtime, the program may
load and unload libraries. Hence dynamic loaded libraries
should also be protected by RERANZ. The kernel module
intercepts the mmap system call to monitor dynamic library
loading of the protected process at runtime. When the pro-
tected process loads a library at runtime, the kernel mod-
ule cancels its executable permission and allocates a Code
Cache that is shared with the shuffling process. And then it
sends a message to the shuffling process so that randomized
code can be generated in the Code Cache. The kernel mod-
ule also intercepts the munmap system call to monitor the
operation of library unloading. If the protected process un-
loads a library, the kernel module will free its Code Cache
and notify the shuffling process.

Destroying Caller-saved Registers As mentioned before,
when transforming indirect calls and some indirect jumps,
RERANZ pushes the jump targets of indirect call/jump on
the stack and calculates the target address of the trampo-
line. These operations use several memory access instruc-
tions that may cause substantial slowdown. To reduce the
number of memory accesses, we leverage caller-saved reg-
isters, which are saved before a function invocation by the
caller and recovered after returning from the callee. It is
hence safe to reuse caller-saved registers at the function in-
vocation (only indirect jumps in PLT are handled actually).

Merging Fall-through Basic Block When generating Re-
locatableBBs, RERANZ generates a direct jump at the end
of each basic block with a conditional jump (shown in Fig.
4). This direct jump is used to link up with the fall-through
basic block and may incur high performance overhead due
to degraded cache performance (In our experiment of SPEC
CPU2006 benchmarks, these direct jumps will incur 176%
performance overhead on average). We eliminate this in-
struction by merging the fall-through basic block with the
current basic block. The randomization granularity is moved
from basic block level to extended basic block level.

Reordering Extended Basic Blocks in Group A pro-
gram’s execution often exhibits both spatial and temporal
code locality. However, the fine-grained randomization in
RERANZ destroys the spatial locality and may seriously de-
grade the performance. To balance code locality and en-
tropy, we reorder extended basic blocks in its group. When
generating code variants, the shuffling process first sorts all
extended basic blocks in each module by addresses. Every
N extended basic block in sequence form a group and R-

151

App. Useful Gadgets(%) Runtime
O/H (%) #RR #Call/s Memory

O/H(MB) App. Useful Gadgets(%) Runtime
O/H (%) #RR #Call/s Memory

O/H(MB)Basic Enhanced Basic Enhanced

SPEC CPU2006 benchmark

perlbench 10.69% 0.34% 12.42% 5 28235191 68.43 povray 10.16% 0.37% 11.51% 3 35031309 73.86
bzip2 9.58% 0.44% 2.12% 0 7297097 36.03 calculix 11.15% 0.29% 0.32% 4 3692203 88.97
gcc 10.37% 0.26% 11.50% 0 15710421 120.46 hmmer 10.55% 0.39% -0.33% 0 1912030 47.44
bwaves 10.82% 0.33% 2.75% 0 259135 62.03 sjeng 9.69% 0.44% 9.21% 2 18088184 37.41
games 6.42% 0.15% 9.33% 424 3426329 167.50 GemsFDTD 10.56% 0.32% -1.34% 0 1530312 68.50
mcf 9.59% 0.45% 2.20% 0 317371 35.26 libquantum 10.22% 0.40% 10.14% 1 74 42.25
milc 10.34% 0.40% 1.29% 1 394280 43.33 h264ref 8.87% 0.32% 3.86% 7 7201183 49.43
zeusmp 10.79% 0.32% 1.92% 0 1489 66.11 tonto 10.48% 0.23% 2.55% 8 8941394 110.98
gromacs 8.44% 0.30% 1.56% 0 930197 54.87 lbm 10.19% 0.41% 2.47% 0 3104 41.65
cactusADM 11.07% 0.32% 6.89% 0 4912 73.44 omnetpp 9.04% 0.37% 7.19% 0 11450543 70.44
leslie3d 12.45% 0.38% 1.78% 0 85206 63.01 astar 9.67% 0.37% -0.94% 0 124959 54.85
namd 9.54% 0.40% 1.82% 0 741924 58.59 wrf 9.40% 0.22% -0.86% 0 2158017 111.79
gobmk 12.50% 0.36% 14.36% 541 14029556 60.96 sphinx3 9.91% 0.40% 8.48% 120 1819791 45.05
dealII 8.65% 0.30% 14.08% 0 19291456 133.44 xalancbmk 19.40% 0.42% 16.23% 0 25047805 169.83
soplex 9.04% 0.37% 2.16% 2 302930 65.17 Average 10.26% 0.35% 5.33% – – 43.41

Parsec-2.1 benchmark

blackscholes 10.56% 0.40% 14.36% 1 14663214 42.86 fluidanimate 9.97% 0.43% 1.86% 2 78180 56.73
bodytrack 9.13% 0.34% 23.78% 508 7028265 66.91 vips 13.50% 0.32% 2.63% 3 857260 125.35
facesim 10.87% 0.39% 10.11% 105 8498220 110.84 x264 10.72% 0.32% 24.19% 505 24081395 52.66
ferret 7.54% 0.23% 21.51% 3109 4637120 112.95 canneal 9.86% 0.42% 6.35% 28 2173629 57.08
freqmine 9.09% 0.45% 1.84% 1 653920 49.86 dedup 9.90% 0.43% 1.94% 1 1305985 38.30
raytrace 3.39% 0.07% 8.11% 1 3716974 156.61 streamcluster 9.86% 0.42% 2.97% 1 121403 56.83
swaptions 9.75% 0.42% 5.71% 1 21253310 57.32 Average 9.55% 0.36% 9.64% – – 75.72

Web servers

Nginx 9.80% 0.29% – – – 63.28 Apache 11.28% 0.33% – – – 75.30

Table 3: Statistical data of RERANZ when applying to apps. #RR is the number of re-randomization when threshold = 0.

ERANZ randomizes the order of the extended basic blocks
in each group. The start addresses of these extended basic
blocks are also random. To increase entropy, the shuffling
process places a random number (less than M) of ‘0xd6’7

between adjacent extended basic blocks. In section 6, we
will study the effect of N and M on the performance.

6. Evaluation
We implement RERANZ on Ubuntu 12.04/Intel E74807 ma-
chine with 48 cores, 1.6GHZ, and 16GB RAM. In our ex-
periment, we use SPEC CPU2006 [23], the multi-threaded
Parsec-2.1 [9], Apache server httpd-2.4.1 [1] and Nginx
1.4.0 [5] as benchmarks. The Apache web server is con-
figured to work in the mpm-worker mode with 16 threads.
Nginx is configured to work with 4 worker processes.

6.1 Security Effectiveness
6.1.1 Memory Snapshot Analysis
We measure the gadgets obtained from the code variants to
evaluate how effective can RERANZ fence off code reuse at-
tacks. Our method is to dump a code variant for each appli-
cation in Table 3 randomly at runtime and use ROPgadget-
5.4 [36] tool to find useful gadgets in these code variants.
The scan depth (i.e., the max length of a gadget) of the tool
is set to 100-bytes (default is 10). We evaluate the gadgets
from the following two aspects. a. The ratio of useful gad-
gets (mentioned in section 4.2.1) in our basic design (Col-

7 On the X86 64 platform, the encoding of ‘0xd6’ represents an invalid
instruction.

umn “Basic”); b. The ratio of useful gadgets in the enhanced
design (Column “Enhanced”). From Table 3, we can see that
compared with the basic design, the enhanced design can
eliminate (>99.6%) more useful gadgets. The useful gad-
gets are mainly from libc.so and libstdc++.so libraries’ code
variants. We also extracted the useful gadgets for each appli-
cation and used the build-in gadget compiler of the tool to
craft a code reuse attack that causes the program to start a
shell. The results show that they all failed.

To further evaluate the categories of the useful gadgets,
we extract and analyse all unique useful gadgets from all
applications in Table 3. To be generic, we use the commonly
classification proposed in [12, 13, 34]. The classification
divides gadgets into six types, as shown in Table 4. When we
increased the gadget length, the number of gadgets in each
category also increased. However, the System Call Gadgets
are consistently missing. We also analyzed all 14 Branch
Gadgets, which conditionally change the stack pointer in the
table, and found that they are all unusable. The reason is that
even if these gadgets change the stack pointer, but the jump
targets (next gadget) will not be affected by the stack pointer.
So it would be very difficult to use the extracted gadgets to

XXXXXXXXXXLength
Type Load Store Arithmetic Logic Branch Syscall

≤ ∞ 685 275 146 38 14 0
≤ 15 263 106 84 15 0 0
≤ 10 108 36 25 0 0 0
≤ 5 80 0 19 0 0 0

Table 4: The category of gadgets in Table 3. Length denotes
the number of instructions in a gadget.

152

810.25 1.002784653 790.14 0.977896
1159.2 0.972483221 1182.3 0.991862
1143.73 1.065917987 1145.97 1.068006
549.62 1.181978495 579.63 1.246516

0.055141988 0.058305

Average 100 200
0 0.053 0.055 0.056
50 0.053 0.058 0.063
100 0.057 0.064 0.068
150 0.063 0.067 0.072
200 0.066 0.070 0.073

5.33% 5.28%

5.70%

6.30%
6.60%

5.51%

5.83%

6.45%

6.72%
6.97%

5.59%

6.26%

6.83% 7.25%
7.30%

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

8.0%

0 50 100 150 200

O
ve

rh
e

ad
(%

)

Group Size
(a)SPEC CPU 2006 benchmarks

Max Rand Number=0

Max Rand Number=100

Max Rand Number=200

9.64% 9.79% 9.94%

11.24%

12.83%

9.72%

10.94%

12.90%

14.58%
15.92%

10.34%

13.35%
15.39%

15.93%

16.29%

9%

10%

11%

12%

13%

14%

15%

16%

17%

18%

0 50 100 150 200

O
ve

rh
ea

d
(%

)
Group Size

(b)Parsec benchmarks

Max Rand Number=0

Max Rand Number=100

Max Rand Number=200

Figure 8: The impact of max random number and group size
on SPEC CPU2006 and Parsec benchmarks.

launch a meaningful code reuse attack. Furthermore, Vasilis
et al. observed that the actual gadgets used in real exploits
have less than six instructions [33]. As shown in Table 4,
when the gadget length is ≤ 5, four out of six gadget types
are missing, making it very difficult for the adversaries to
launch a real code reuse attack successfully.

6.1.2 Nginx Memory Disclosure Attack
We use Nginx 1.4.0 with a stack buffer overflow vulnerabili-
ty to evaluate the effectiveness of RERANZ. This web server
is popular and vulnerable to the Blind ROP attack. We use
the optimized tool of Blind ROP [2] to conduct the attack
against the Nginx server. This attack consists of three steps:
Step1. Stack Probing: It overwrites the stack byte-by-byte
to guess the real value of canary and the return address. If the
worker process does not crash, the guessed value is correc-
t; Step2. Finding Enough Gadgets: The tool scans the text
segments by overwriting the obtained return addresses with
pointers to each potential gadget entry and then inspecting
the resulting program behaviors (e.g., crash, block, closed
or stays open); Step3. Build the Exploit.

RERANZ defends against such attacks at all three steps.
For the first step, it prevents obtaining the real return ad-
dress. Even if the adversary obtained the real return address,
it would still fail to find the stop gadget in the second step.
A stop gadget is a necessary gadget to conduct this attack,
whose behavior is to cause the program to block. Because
the return address on the stack is not used by a ret instruc-
tion, when the attack overwrites the return address to probe
a possible stop gadget, the worker process will never be
blocked. As expected, the attack always fails.

6.2 Performance Evaluation
In the performance evaluation experiment, the shuffling pro-
cess generates two code variants continuously. We evaluate
RERANZ with different extended basic blocks’ group sizes
and max random numbers of padding bytes (i.e. ‘0xd6’).
The re-randomization strategy is TASR’s basic strategy (i.e.,
without output data accumulation). For the I/O intensive
applications, Nginx and Apache servers, we evaluate the
performance with different thresholds of accumulated data
transmitted by output system calls.

53.92%

25.72%

14.68%
13.70%12.43%10.77%

9.29%

48.46%

18.82%

12.93%
12.25%

11.92%
10.16%

9.78%

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25 30

O
ve

rh
ea

d
(%

)

Threshold (KB)

Apache

Nginx

(a) The impact of threshold on Overhead

TASR's Re-rand Strategy

137.60

20.08
10.89 7.45 5.66 4.55 3.84

316.87

19.14

9.96 6.75 5.14 4.16 3.51
0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

#R
e-

ra
n

d
/s

Threshold (KB)

Apache

Nginx

(b) The impact of threshold on #Re-rand

TASR's
Re-rand
Strategy

Figure 9: The performance of web servers.

6.2.1 SPEC CPU2006 and Parsec Benchmarks
Column “Runtime O/H” in Table 3 lists the runtime over-
head of RERANZ on SPEC CPU2006 and Parsec bench-
marks. The shuffling process only randomizes the start ad-
dress of all extended basic blocks without reordering extend-
ed basic blocks and placing ‘0xd6’. The average overhead of
SPEC is 5.33% and 9.64% for Parsec. Column “#RR” list-
s the number of re-randomizations and Column “#Calls/s”
lists the invocation frequency of function calls in the original
applications at runtime. From the table, we can observe that
function calls are frequent in several benchmarks. As such,
they manipulate RRAT frequently and cause high overhead.
The frequency of re-randomization is high in bodytrack, fer-
ret and x264, and thus high overhead.

Figure 8 shows the impact of the max random number of
‘0xd6’ and the group size on SPEC and Parsec. Observe that
the average runtime overhead increases with the growing
size of groups and the growing number of ‘0xd6’.

6.2.2 Network I/O Performance Evaluation
We measure the performance of I/O intensive web servers
using the same method as in [15, 30]. Particularly, we use the
ab tool [7] on the client machine to send network requests
(e.g., ab −n 100000 −c 8 http://server-ip/index.html) to
retrieve the default work web page (612 bytes) of Nginx on
the server running with RERANZ. The shuffling process only
randomizes the start addresses of all extended basic blocks.

Figure 9(a) shows the performance of web servers with d-
ifferent thresholds of the accumulated amount of transmitted
data. The performance overhead for TASR (threshold=0) is
very high and both web servers suffer from decreasing over-
head with the growth of the threshold. Figure 9(b) shows the
frequency of re-randomization with different thresholds.

6.3 Memory Overhead
Because RERANZ uses shared memory, we measure the
physical memory overhead. We achieve this by tracking the
peak Resident Set Size (RSS8) of the protected application
and its shuffling process over the entire program execu-
tion. Column “Memory O/H” in Table 3 presents the results

8 It measures the size of process memory that remains resident in the RAM
or physical memory. In the kernel module, using get mm hiwater rss(struct
mm struct *mm) can get the value.

153

when the shuffling process only generates two code variants.
For SPEC CPU2006 and Parsec benchmarks, RERANZ us-
es 73MB and 75MB additional memory on average. For web
servers, the memory overhead is close to 69MB. Some appli-
cations in Table 3 have higher overhead because their code
size and number of libraries used are larger. Such memory
overhead is usually tolerable in modern systems.

7. Discussion
In this section, we review some security designs in RERANZ
against the memory disclosure attacks. And then we discuss
some limitations of RERANZ with our planned future work.

RERANZ needs to ensure the jump targets of all in-
direct branch instructions are the entries of basic blocks
(i.e., the locations of trampolines), otherwise the protect-
ed process may run into undefined behaviour. Similarly, al-
l recent fine-grained (basic block level) randomization or
re-randomization [14, 17, 29, 44, 45] had the same pre-
sumptions. Differing from these techniques, RERANZ re-
randomizes the basic blocks in the Code Cache instead of
the original code region. This is to preserve the original
code layout that is necessary for applications requiring self-
referencing feature. Obviously, the adversaries could only
utilize the useful gadgets, that named “basic block entry”
gadgets in [29], to conduct the attack. Hence, RERANZ had
enhanced the basic design from two aspects to reduce the
number of useful gadgets. In both basic and enhanced de-
signs, the adversaries could control the indirect branch in-
struction to jump to any location they want. For example,
the jump target of an indirect call instruction = the value
of the code pointer (stored in registers or memory) + off c
(shown in Fig. 3). For the adversaries, these code pointers
are stored in the payload or the overflowed space (shown
in Fig. 1). So the adversaries only need to tune the value of
these pointers, and the indirect call instruction could jump
to any locations (including the Code Cache). In the whole
memory space, only the Code Cache has the executable per-
missionm but the code there is continuously re-randomized.
So the adversaries cannot utilize the code of Code Cache
directly. However, the adversaries could still utilize the re-
mainder useful gadgets to conduct the code reuse attacks.
But the number and the categories of these gadgets are very
rare. So our enhanced design had raised the difficulty to use
these gadgets to perform a real code reuse attack. But we
should note that almost all of the remainder trampolines in
the enhanced design are the function entries. So the adver-
saries could conduct the function reuse attacks [16], such
as COOP [37] and Return-into-libc [6] attacks. In the fu-
ture, we plan to further minimize the use of trampolines for
functions in order to prevent against such attacks. RERANZ
currently monitors the accumulated amount of transmitted
data to trigger re-randomization. Watching over the content
transmitted might help to make more accurate decisions on
whether re-randomization is warranted.

Some techniques of RERANZ can also be applied to other
virtual machines with dynamic binary translation to improve
their security and performance.

8. Conclusion
RERANZ is a light-weight virtual machine using dynamic
code re-randomization to mitigate memoy disclosure attack-
s. It leverages a helper process, called the “shuffling pro-
cess”, to generate code variants for the protected process
through the shared memory mechanism. This approach p-
reserves the DEP protection mechanism and effectively e-
liminates re-randomization caused delays. Unlike other bi-
nary re-randomization approach, RERANZ does not require
expensive and difficult pointer tracking. Instead, it uses dy-
namic address translation to handle pointer related jumps.
The translation procedure is hard to exploit by the adversary
to launch a meaningful code reuse attacks. And our proto-
type can prevent from the Blind ROP attack against the pop-
ular web server, Nginx.

Acknowledgments
We would like to thank the anonymous reviewers for their
useful feedback. This research is supported by the Na-
tional Natural Science Foundation of China (NSFC) un-
der grant 61332009 and 61303052, the Beijing Municipal
Science & Technology Commission Program under grant
D161100001216002. Author Wei-Chung Hsu is partially
supported by MOST 105-2218-E-002-017 and MOST 105-
2622-8-002-002.

References
[1] Apache HTTP Server. In http://httpd.apache.org/.

[2] Blind ROP tool. In http://www.scs.stanford.edu/brop/.

[3] LLVM Compiler Infrastructure. In http://llvm.org/.

[4] Libunwind library. In http://www.nongnu.org/libunwind/.

[5] Nginx Web Server. In http://nginx.org/.

[6] Getting around non-executable stack (and fix). In
http://seclists.org/bugtraq/1997/Aug/63.

[7] ab tool. In https://httpd.apache.org/docs/2.4/programs/ab.html.

[8] M. Backes and S. Nürnberger. Oxymoron: Making Fine-
Grained Memory Randomization Practical by Allowing Code
Sharing. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 433–447, San Diego, CA, Aug. 2014.
USENIX Association. ISBN 978-1-931971-15-7.

[9] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[10] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhrav-
i. Timely Rerandomization for Mitigating Memory Disclo-
sures. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, pages
268–279, New York, NY, USA, 2015. ACM.

154

[11] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazires, and
D. Boneh. Hacking Blind. In 2014 IEEE Symposium on Se-
curity and Privacy, pages 227–242, May 2014.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
Programming: A New Class of Code-reuse Attack. In Pro-
ceedings of the 6th ACM Symposium on Information, Comput-
er and Communications Security, ASIACCS ’11, pages 30–
40, New York, NY, USA, 2011. ACM.

[13] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented Programming
Without Returns. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS ’10, pages
559–572, New York, NY, USA, 2010. ACM.

[14] Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix: On-
demand live randomization. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy,
CODASPY ’16, pages 50–61, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-3935-3.

[15] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPeck-
er: A Generic and Practical Approach For Defending Against
ROP Attacks. In NDSS. The Internet Society, 2014.

[16] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz.
It’s a TRaP: Table Randomization and Protection Against
Function-Reuse Attacks. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’15, pages 243–255, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3832-5.

[17] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R.
Sadeghi. Gadge Me if You Can: Secure and Efficient Ad-
hoc Instruction-level Randomization for X86 and ARM. In
Proceedings of the 8th ACM SIGSAC Symposium on Infor-
mation, Computer and Communications Security, ASIA CCS
’13, pages 299–310, New York, NY, USA, 2013. ACM.

[18] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz.
Enabling Client-Side Crash-Resistance to Overcome Diver-
sification and Information Hiding. In 23nd Annual Network
and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016, 2016.

[19] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. En-
hanced Operating System Security Through Efficient and
Fine-grained Address Space Randomization. In Proceedings
of the 21st USENIX Conference on Security Symposium, Se-
curity’12, pages 40–40, Berkeley, CA, USA, 2012. USENIX
Association.

[20] E. G?ktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In 2014
IEEE Symposium on Security and Privacy, pages 575–589,
May 2014. doi: 10.1109/SP.2014.43.

[21] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos,
G. Portokalidis, C. Giuffrida, and H. Bos. Undermining In-
formation Hiding (and What to Do about It). In 25th USENIX
Security Symposium (USENIX Security 16), pages 105–119,
Austin, TX, Aug. 2016. USENIX Association. ISBN 978-1-
931971-32-4.

[22] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch side-channel attacks: Bypassing smap and kernel
aslr. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’16,
pages 368–379, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4139-4. doi: 10.1145/2976749.2978356. URL
http://doi.acm.org/10.1145/2976749.2978356.

[23] J. L. Henning. SPEC CPU2006 Benchmark Description-
s. SIGARCH Comput. Archit. News, 34(4):1–17, Sept. 2006.
ISSN 0163-5964.

[24] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. David-
son. ILR: Where’d My Gadgets Go? In 2012 IEEE Sympo-
sium on Security and Privacy, pages 571–585, May 2012.

[25] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Auto-
matic Generation of Data-Oriented Exploits. In 24th USENIX
Security Symposium (USENIX Security 15), pages 177–192,
Washington, D.C., Aug. 2015. USENIX Association.

[26] R. Hund, C. Willems, and T. Holz. Practical timing side chan-
nel attacks against kernel space aslr. In 2013 IEEE Sympo-
sium on Security and Privacy, pages 191–205, May 2013. doi:
10.1109/SP.2013.23.

[27] Y. Jang, S. Lee, and T. Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Comput-
er and Communications Security, CCS ’16, pages 380–
392, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4139-4. doi: 10.1145/2976749.2978321. URL
http://doi.acm.org/10.1145/2976749.2978321.

[28] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address
Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software. In ACSAC, pages
339–348. IEEE Computer Society, 2006.

[29] H. Koo and M. Polychronakis. Juggling the gadgets: Binary-
level code randomization using instruction displacement. In
Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, ASIA CCS ’16, pages
23–34, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4233-9.

[30] K. Lu, S. Nürnberger, M. Backes, and W. Lee. How to Make
ASLR Win the Clone Wars: Runtime Re-Randomization. In
23rd Annual Symposium on Network and Distributed System
Security (NDSS 2016), 2015.

[31] Microsoft. Data Execution Prevention (DEP).

[32] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the Gadgets: Hindering Return-Oriented Programming Using
In-place Code Randomization. In 2012 IEEE Symposium on
Security and Privacy, pages 601–615, May 2012.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis. Trans-
parent ROP Exploit Mitigation Using Indirect Branch Trac-
ing. In Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), pages 447–462, Washington,
D.C., 2013. USENIX. ISBN 978-1-931971-03-4.

[34] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
Oriented Programming: Systems, Languages, and Applica-
tions. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34, Mar. 2012.
ISSN 1094-9224.

155

[35] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Sur-
gically Returning to Randomized lib(c). In ACSAC, pages 60–
69. IEEE Computer Society, 2009. ISBN 978-0-7695-3919-5.

[36] J. Salwan. ROPGadget. In http://shell-
storm.org/project/ROPgadget.

[37] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi,
and T. Holz. Counterfeit Object-oriented Programming: On
the Difficulty of Preventing Code Reuse Attacks in C++ Ap-
plications. In 2015 IEEE Symposium on Security and Privacy,
pages 745–762, May 2015.

[38] J. Seibert, H. Okhravi, and E. Söderström. Information Leaks
Without Memory Disclosures: Remote Side Channel Attack-
s on Diversified Code. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, pages 54–65, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2957-6.

[39] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-space Randomiza-
tion. In Proceedings of the 11th ACM Conference on Comput-
er and Communications Security, CCS ’04, pages 298–307,
New York, NY, USA, 2004. ACM. ISBN 1-58113-961-6.

[40] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. R. Sadeghi. Just-In-Time Code Reuse: On the Effec-
tiveness of Fine-Grained Address Space Layout Randomiza-

tion. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 574–588, May 2013.

[41] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lach-
mund, and T. Walter. Breaking the Memory Secrecy Assump-
tion. In Proceedings of the Second European Workshop on
System Security, EUROSEC ’09, pages 1–8, New York, NY,
USA, 2009. ACM.

[42] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar. Eternal war
in memory. IEEE Security Privacy, 12(3):45–53, May 2014.
ISSN 1540-7993. doi: 10.1109/MSP.2014.44.

[43] U.Wiki. Address space layout randomization (ASLR).

[44] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary Stir-
ring: Self-randomizing Instruction Addresses of Legacy x86
Binary Code. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages
157–168, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1651-4.

[45] D. Williams-King, G. Gobieski, K. Williams-King, J. P.
Blake, X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang,
and W. Aiello. Shuffler: Fast and deployable continuous code
re-randomization. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 367–
382, GA, Nov. 2016. USENIX Association.

156

