
Using Local Clocks to Reproduce
Concurrency Bugs

Zhe Wang , Chenggang Wu , Xiang Yuan, Zhenjiang Wang, Jianjun Li, Pen-Chung Yew, Fellow, IEEE,

Jeff Huang,Member, IEEE, Xiaobing Feng, Yanyan Lan, Yunji Chen , Yuanming Lai , and Yong Guan

Abstract—Multi-threaded programs play an increasingly important role in current multi-core environments. Exposing concurrency

bugs and debugging such multi-threaded programs are quite challenging due to their inherent non-determinism. In order to mitigate

such non-determinism, many approaches such as record-and-replay have been proposed. However, those approaches often suffer

significant performance degradation because they require a large amount of recorded information and/or long analysis and replay time.

In this paper, we propose an efficient and effective approach, ReCBuLC (reproducing concurrency bugs using local clocks), to take

advantage of the hardware clocks available on modern processors. The key idea is to reduce the recording overhead and the time to

analyze events’ global order by recording timestamps in each thread. These timestamps are used to determine the global order of

shared accesses. To avoid the large overhead in accessing system-wide global clock, we opt to use local per-core clocks that incur

much less access overhead. We then propose techniques to resolve skews among local clocks and obtain an accurate global event

order. By using per-core clocks, state-of-the-art bug reproducing systems such as PRES and CLAP can reduce their recording

overheads by up to 85 percent, and the analysis time up to 84.66%�99.99%, respectively.

Index Terms—Concurrency, bug reproducing, local clock

Ç

1 INTRODUCTION

PARALLEL programming is essential to fulfill the full
potential of multi-core processors. However, debugging

such programs has become a major challenge because of the
non-deterministic nature of parallel programs [39]. A survey
showed that it could take an average of 73 days to fix a con-
currency bug [1]. These bugs can have serious consequences.
Well-known incidents include the Therac-25 medical acci-
dent [2] and the 2003 North American blackout [3]. Such
bugs need to be located and fixed as quickly as possible.

One of the main debugging techniques is Record &
Replay (RR). It faithfully records the thread interleaving
during the execution and deterministically replays the same
interleaving to reproduce bugs [20], [22], [26], [27], [37]. The
main challenge in RR is the need to reduce the significant
overhead incurred in the recording phase. Some RR techni-
ques [14], [15] could incur 10X�100X slowdown. Further-
more, the perturbation caused by the instrumented code
and the recording overhead may alter the interleaving
behavior of the program execution, which can obscure some
bugs especially on systems with weak memory models [6].

To address those challenges, several schemes have been
proposed to record only minimally required interleaving
information, and reproduce the buggy interleaving using
offline analysis and guided exploration. Because signifi-
cantly less information is recorded, the runtime overhead
can be substantially reduced. Many systems adopt this
approach [6], [18], [21], [23], [25]. Although the interleaving
thus reproduced may not be exactly the same as the original
one, they are useful in practice because the same failure can
still be faithfully reproduced.

For example, PRES [18] records the global orders of some
special events, such as synchronizations, system calls, func-
tion calls, basic blocks, and memory instructions. When a
bug turns up, it tries to analyze the order of the shared
accesses that leads to the bug. At the function-call level, it
can reproduce bugs in at most 10 tries, and experiences
around 10%�779% slowdown [18].

Similar to other RR techniques, PRES needs to explicitly
record the global order of shared-resource accesses among
threads. They use synchronization operations to serialize
the event logging or increment of a global event counter,
which are the root cause of the significant overheads [6].

� Z.Wang iswith the State Key Laboratory of Computer Architecture, Institute
of Computing Technology, Chinese Academy of Sciences, and with the
University of Chinese Academy of Sciences, Huairou, Beijing 100190, P.R.
China. E-mail: wangzhe12@ict.ac.cn.

� C. Wu, X. Feng, Y. Lan, Y. Chen, and Y. Lai are with the State Key
Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Huairou, Beijing 100190, P.R. China.
E-mail: {wucg, fxb, lanyanyan, cyj, laiyuanming}@ict.ac.cn.

� P.-C. Yew is with the Department of Computer Science and Engineering,
University of Minnesota at Twin-Cities, Minnesota, MN 55455.
E-mail: yew@cs.umn.edu.

� J. Huang is with the Department of Computer Science and Engineering,
Texas A&MUniversity, College Station, TX 77843.
E-mail: jeff@cse.tamu.edu.

� Y. Guan is with the College of Information Engineering, Capital Normal
University, Huairou, Beijing 100190, P.R. China.
E-mail: guanyong@mail.cnu.edu.cn.

� X. Yuan and Z. Wang are now with Huawei Technologies, Huairou,
Beijing 100190, P.R. China. E-mail: {yuanxiang4, zj.wang}@huawei.com.

� J. Li is now with Horizon Robotics, Inc. Huairou, Beijing 100190, P.R.
China. E-mail: jianjun.li@hobot.cc.

Manuscript received 30 Dec. 2016; revised 30 Aug. 2017; accepted 10 Sept.
2017. Date of publication 14 Sept. 2017; date of current version 9 Nov. 2018.
(Corresponding author: Chenggang Wu.)
Recommended for acceptance by A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2752158

1112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4719-1804
https://orcid.org/0000-0003-4719-1804
https://orcid.org/0000-0003-4719-1804
https://orcid.org/0000-0003-4719-1804
https://orcid.org/0000-0003-4719-1804
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0003-3925-5185
https://orcid.org/0000-0003-3925-5185
https://orcid.org/0000-0003-3925-5185
https://orcid.org/0000-0003-3925-5185
https://orcid.org/0000-0003-3925-5185
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0001-5885-0858
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

To avoid such expensive synchronizations, an effective
mechanism (called CLAP [6]) was proposed. Each thread in
CLAP only records its local information. During the offline
analysis, CLAP generates constraints by symbolic execution
and searches for buggy interleavings using a Satisfiability
Modulo Theories (SMT) solver, such as Yices [38] and Z3
[28]. Thus, its slowdown is reduced to about 9�294 percent.
However, it cannot get the buggy interleavings directly.
Instead, it relies on an SMT solver, which is hard to scale
because such constraint solving is NP-hard.

These systems traded off less time in the record phase
with more time in the analysis and replay phase. It is thus
very desirable to find a scheme that does not require these
difficult tradeoffs. Such a scheme could greatly improve the
efficiency of program debugging. One key insight here is to
take advantage of the available hardware per-core local
clocks to reduce both the recording overhead and the bug
reproduction time. Most commercial processors today, such
as Intel/AMD x86, IBM Power, MIPS, and Sun SPARC, pro-
vide such clocks. Each core can access its own local clock
without any need for synchronization with other cores. The
order of shared accesses can then be inferred accordingly.
However, these local clocks are core-private. The hardware
does not guarantee them to be consistent, i.e., there may be
different skews among these clocks. It is quite difficult to
get the precise skews among these local clocks (unless there
is a global clock as assumed in [19]). The main challenge
here is thus to find an effective way to resolve these local
timestamps and determine a global order among them.

In this paper, we propose a newmechanism to reproduce
currency bugs using local clocks, ReCBuLC, and to recon-
struct the order of shared-memory accesses among threads
using local timestamps. We apply ReCBuLC to two recent
systems on the x86/Linux platform, and show that it can
significantly improve their performance.

Our contributions are as follows:

� We propose to use hardware per-core clocks to
determine the global order of shared accesses among
threads that allows concurrency bugs to be repro-
duced with substantially reduced overheads.

� We present a methodology to obtain a range of
skews among per-core clocks. We then use a statisti-
cal scheme to narrow the range of clock skews to less
than 10 ticks (10 cycles) with a high confidence.

� ReCBuLC is applied to two recent systems and shows
that it can improve their efficiency significantly.

In the rest of the paper, Section 2 gives some background
and motivation. Section 3 presents two schemes to calculate
the skews among local clocks. Section 4 applies ReCBuLC to
PRES and CLAP. Section 5 details our implementations of
PRES and CLAP with ReCBuLC. Section 6 presents our
experimental results. Section 7 gives the discussion about
the limitation and the future work. Section 8 covers the
related work, and Section 9 concludes this paper.

2 BACKGROUND AND MOTIVATION

2.1 Local Clocks on Commercial Processors

Almost all mainstream commercial processors provide local
per-core clocks. Applications can access them for needed
timing information. For example, Intel/AMD x86 processors

provide a 64-bit Time Stamp Counter (TSC) since the Pen-
tium family. The TSC is incremented at a near constant
rate with respect to the wall-clock time. It is not affected
by the dynamic frequency scaling [7]. Similar mechanisms
exist on other processors. IBM Power processors have a
64-bit Time Base register on each core [11]. Its counting fre-
quency can be changed by software. If we record the fre-
quencies before and after the change, we can convert the
value of Time Base register to the wall clock time [11].
MIPS processors also have a similar Count Register [10],
but its size is only 32-bit. SPARC processors have a 63-bit
Tick register [12] to keep clock cycles.

2.2 The Time Stamp Counter on Intel x86
Processors

Although most manufacturers have their own unique
designs of local clocks, the main feature is very similar. In
this section, we mainly focus on the TSC of Intel x86
processors.

There are three generations of TSC on x86 processors:Var-
iant TSC, Constant TSC and Invariant TSC (time order). Vari-
ant TSC is the first generation from a very old processor.
Because its triggering frequency can be impacted by the CPU
frequency, it is not widely used. The Constant/Invariant
TSCs can operate at a constant rate in most processor states
even when CPU frequency is changed. The only difference
between them is that the Constant TSC can be changed (e.g.,
stopped) when the CPU is run on ACPI deep C-state transi-
tions [7]. Both can be changed (i.e., re-initialized and
stopped) in some ACPI deep S-states [32]. The frequency of
the Constant TSC is set by the ratio of its maximum core
clock rate and the bus clock rate of the processor [7]. The
Invariant TSC is based on the invariant timekeeping hard-
ware that runs at the core crystal clock frequency [7]. For
cores on the same chip, their TSCs operate at the same fre-
quency. For processors of the same type (i.e., in the same
CPU family and having/with the same maximum core
clock frequency) and on the same board, their TSCs should
operate at the same frequency too. In this paper, we only
consider Constant/Invariant TSCs.

With Constant/Invariant TSCs, all local cores reset TSCs to
0when the processor is powered up. At the boot time, all pro-
cessors that are connected with the same RESET signal will
get reset. The RESET signal is guaranteed to arrive at each
processor at the same time. However, even with such facili-
ties we still cannot ensure that all TSCs are synchronized at
all time for the following reasons: i) A new processor can be
introducedusingCPUhotplug,whichmay not have synchro-
nized TSC value with those on existing CPUs; ii) Software or
firmware canmodify a TSC through thewrmsr instruction [7],
e.g., some BIOS SMI handlermay hide its execution by chang-
ing the TSC value [34] and breaks synchronization with other
TSCs; iii) In [33], it is mentioned that the thermal effect could
cause TSCs to drift during a reset. Moreover, the Intel manual
cautions that it is impractical to synchronize all logical pro-
cessors using software at any given time [7].

2.3 Challenges to Reproduce Concurrency Bugs
Using Local Clocks

If there were “ideal” local clocks that had the same time-
stamp across all different cores at any time (like a global

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1113

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

clock), each thread could locally record its own timestamps
when accessing shared resources. The recorded timestamps
could then be compared directly to determine their global
order. We will need neither synchronization when they are
being recorded, nor constraints solving when they are
being reproduced. The overall efficiency can be signifi-
cantly improved.

An example is shown in Fig. 1. T1 and T2 are two threads
bound to different cores. RdTC is the instruction that reads
the per-core clock. Suppose the time stamps read from two
local clocks are TS1 and TS2, respectively, and TS2 is
smaller than TS1. It means that S6 happens before S2, (i.e.,
S6 � S2), we can infer that S5 � S3. Unfortunately, as men-
tioned in Section 2.2, we cannot derive such an easy conclu-
sion because hardware cannot ensure that per-core clocks
are synchronized at all time.

LReplay [19] expects that future processors will provide
a global clock with a fast access time, which could dramati-
cally reduce the runtime overhead and log size, as it only
needs to record orders that cannot be inferred from the
global clock. Most commercial processors allow local per-
core clocks to be accessed in user mode while require the
global clock to be accessed via a system call with a substan-
tially higher overhead. For example, on Intel Xeon Phi, the
overhead to access its global clock is in the order of �1,600
cycles, while it only takes 6�10 cycles to access local per-
core clock. Nevertheless, there are still significant challenges
that need to be resolved in order to use the low-overhead
per-core local clocks:

(1) We need to stabilize the frequency of the per-core
local clocks. For example, the triggering frequency of
Constant/Invariant TSCs could be changed in some
ACPI states on x86 platforms, and the TSC value
could be modified by firmware implicitly (men-
tioned in Section 2.2). Although the incremental fre-
quency is the same before and after modifying the
TSC value through the wrmsr instruction, the TSC
value is not incremented linearly across all local
clocks. Hence, in a sense, modifying the TSC value
also affects the incremental frequency. Without the
consistent incremental frequency, the local locks can-
not be used to order shared accesses.

(2) Besides the consistent incremental frequency, the dif-
ferences among different per-core clocks should be
measured accurately. In Fig. 1, such differences are
needed to infer whether TS2 is earlier than TS1.
Unfortunately, it is very difficult to get the differences

among per-core clocks. Therefore, to accurately mea-
sure these time differences and use them to order
shared accesses posts another challenge.

(3) We need to determine the precise clock value when
each thread accesses shared resources. Clocks are
read by specific instructions, e.g., rdtsc on x86. They
can be recorded before or after an instruction access-
ing a shared resource. However, in neither case does
the clock value give precisely when the shared
resource is actually accessed. Furthermore, there is
no data dependency between RdTC and the target
shared resource access instruction. Hence, they can
be scheduled dynamically in any order on process-
ors that support out-of-order execution. This means
in Fig. 1, S6 may happen before S5, and S3 may hap-
pen before S2. For this reason, we cannot naively use
the results of RdTC instructions to order shared
accesses.

(4) We need to handle possible overflow of the clocks.
Clocks on MIPS processors have only 32-bits, so
overflows can occur every few seconds. Even a
64-bit clock can still overflow depending on when
we start taking the clock values.

The rest of this paper assumes the following environment:
1) For multi-cores, their local clocks count at the same fre-
quency in most CPU states (e.g., ACPI P-state in x86 process-
ors); 2) For multi-processors, all processors should be of the
same type, use the same crystal oscillator and placed on the
same mainboard. That is, their local clocks have the same
incremental frequency. In such an environment,with themea-
sured differences among these local clocks, we can use their
values to determine the order of sharedmemory accesses.

3 DETERMINING THE ORDER BY LOCAL CLOCKS

When using the local clocks to reproduce concurrency bugs,
almost all processors have the same challenges that are
mentioned in Section 2. So to give our methods clearly, we
mainly discuss how we addressed these challenges on Intel
platforms. Since the clock overflow problem is more promi-
nent on MIPS platforms that have only 32-bit clock, the dis-
cussion about this challenge is specific on MIPS platform.
We believe that ReCBuLC supports all platforms.

3.1 Out-of-Order Execution Exclusion

Most modern processors execute instructions out of order
for higher performance. Although instructions are retired in
order, RdTC reads per-core clock before its retirement, and
thus could be out of its original order. An intuitive solution
is to insert FENCE instructions before and after each RdTC,
which is shown in Fig. 2a. This may seem to work, but it is
much more complicated on today’s multi-core processors.

In modern multi-core processors, the completion of a
write operation can be divided into two phases: (1) Local
Complete (LC), i.e., the data is written to the local write
buffer, but is yet to be seen by other cores; (2) Globally Visi-
ble (GV), i.e., the written data is out of the local write buffer
and is visible to all other cores through the cache coherence
protocol. We use W(LC) and W(GV) to denote the time a
write W is written to the local write buffer and the time W is
globally visible to all other cores, respectively.

Fig. 1. Happen-before determined by local clock.

1114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

In Fig. 2b, a local FENCE only guarantees that W1(LC) �
RdTC1, but it cannot control W1(GV). Based only on the
value of the local clock, we could infer that W1 � R2, which
may not the case. Therefore, a FENCE instruction must
ensure that RdTC is not issued until all previous writes
become GV. In Figs. 2c, 2d, and 2e, we present three solu-
tions on Intel x86 platform to address the global visibility
problem in Fig. 2b. These solutions can also be used on
other platforms. On Intel x86, an MFENCE will hold loads
and stores until all preceding loads and stores become glob-
ally visible, while an LFENCE will hold all instructions (not
just loads and stores as in MFENCE) until all preceding
instructions are locally complete.

A correct implementation on x86 is shown in Fig. 2c. The
STORE in Fig. 2 C is any store instruction that has no rela-
tionship (e.g., data dependence) with other instructions.
The RDTSC is the x86 instruction that reads timestamp
counter. The STORE TSC stores the timestamp into the
memory. The reason we put an STORE here is because
RDTSC is not a regular memory access operation, MFENCE
cannot guarantee thatW1(GV) � RDTSC. Placing an STORE
will guarantee that W1(GV) � STORE. Meanwhile, the first
LFENCE will guarantee that STORE � RDTSC, and W1(GV)
� RDTSC can be guaranteed. The last LFENCE is to guaran-
tee that RDTSC � R1. In this way, we can guarantee that a
more precise local clock value be betweenW1 and R1.

Although MFENCE and LFENCE instructions can guar-
antee the order of memory instructions, they also incur very
high overhead, e.g., three such instructions are needed in
Fig. 2c. To avoid excessive use of such instructions, we can
instead use the CAS (Compare and Swap) instruction and
the processor-specific features of its memory consistency
model. The CAS instruction (e.g., the cmpxchg instruction on
x86) is executed atomically during which the bus and the
cache are locked until its completion. To improve the per-
formance, modern processors often adopt a weaker memory
consistency model. For example, x86 adopts a weaker Total
Store Order (TSO) model [36]. In the TSO model, among the
four possible Read and Write orders, i.e., Read!Write,

Read!Read, Write!Write, and Write!Read, the processor
will not guarantee the order of Write!Read if they access
different memory locations. It allows Read to bypass the
write buffer and execute before the Write if they access dif-
ferent memory locations.

Taking advantage of the CAS instruction and the TSO
model, we only need to use one LFENCE instruction as
shown in Fig. 2d. Before the execution of a CAS instruction,
all Writes in the local write buffer must be made globally
visible. In addition, the LFENCE instruction guarantees that
RDTSC waits until the CAS instruction is completed. READ
TSC (a regular load instruction) will read the value of the
local clock from the memory location written by the STORE
TSC. Because the last three instructions have data depend-
ences, we can guarantee that RDTSC � STORE TSC �
READ TSC. Based on the TSO model, all memory access
instructions after the READ TSC cannot be executed before
it. So, we can guarantee that RDTSC � all following mem-
ory access instructions (including R1). Moreover, READ
TSC will not incur a cache miss that improves the perfor-
mance even further.

On some newer x86 processors, they provide another
instruction RDTSCP to read the timestamp counter [7].
Besides the TSC value, it also provides the serial number of
the logical core. It waits for all previous instructions to be
completed locally before reading the TSC value [7]. With
the help of this instruction, we can eliminate the LFENCE
instruction in Fig. 2d. But RDTSCP cannot guarantee the
preceding instructions are scheduled before it. Similar to
RDTSC, RDTSCP is not a regular load instructions. Hence, a
READ TSC still needs to be placed here to guarantee that
RDTSCP � R1. The final optimized code sequence is shown
in Fig. 2e.

In Section 6.3, we provide some experimental results to
compare the two implementations shown in Figs. 2d and 2e.

3.2 Stabilizing the Triggering Frequency
of Per-Core Clocks

As mentioned in Section 2.2, there are two scenarios that can
affect the frequency of a local clock: 1) CPU runs into some
special states (e.g., ACPI C- or S- states on x86); 2) the soft-
ware or the firmware modifies the TSC value. We adopt
two different measures to handle these two situations.

(Scenario 1) Use a kernel module to control the CPU
states. For example, for the x86 CPU with Constant TSC, the
kernel module keeps the CPU from running into the ACPI
deep C- and S- states during the record and replay. For the
x86 CPU with Invariant TSC, the kernel module keeps the
CPU from running into the ACPI deep S-states.

(Scenario 2) Measure the difference among per-core
clocks before and after the record and replay. During the
record and replay, other software or firmware could also
run on the core (e.g., for process scheduling). They may
modify the local clock while we cannot prevent such opera-
tions. Our strategy is to detect whether such operations
actually occurred during the record and replay. To do so,
we measure the difference among per-core clocks twice:
before and after the record and replay. We compare their
differences. If the differences are small, we consider the
local clocks not modified. Otherwise, we regard the local
clocks have been modified, and we need to repeat the

Fig. 2. TC order.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1115

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

record-and-replay. In fact, we have not encountered such a
situation during all our experiments. But we still present an
experiment in Section 6.5 that simulates the modification of
the local clocks (speeding up one of the clocks) to show how
much impact it can have.

3.3 Handling the Time Differences among
Per-Core Clocks

Although per-core clock values among cores could vary at
any time, we can still make use of them if we know their dif-
ferences (called d). An example is shown in Fig. 3. Assume
that the values of two local clocks are TS_Core1 and TS_Core2,
respectively. Then, d is TS_Core2 - TS_Core1. TS2 < TS1 + d
means S6 � S2 (i.e., RdTC2 � RdTC1). We can infer that S5 �
S3. However, it is very difficult to determine the value of d
precisely as mentioned in Section 2. Fortunately, it turns out
that if we can get a range of possible values on d, we still can
determine the order of shared accesses among threads.

Taking Fig. 3 as an example, assume d 2 [d1, d2], i.e., d is
in the range of d1 and d2. If TS2 - d1 < TS1, we have TS2 -
d < TS2 - d1 < TS1, and this means S6 � S2. We can thus
infer S5 � S3. Similarly if TS1 + d2 < TS2, we can infer S1 �
S7. For other cases, their orders cannot be determined.
Although the range of d is not as good as a precise d, it is still
possible to determine their order if the range is small enough.

On processors on with we cannot obtain the value of d
precisely, we propose two schemes to get a range of d:

(Scheme 1) Use test programs to obtain a range of d.
(Scheme 2) Use statistical means to obtain a smaller range

of dwith a high confidence.

3.3.1 Scheme 1-Use Test Programs

We designed a small test program shown in Fig. 4. The order
of RdTC and other instructions is guaranteed. The fence
instructions are not included for clarity. Threads T1 and T2
are bound to two cores on which d is measured. Each thread
writes a different value to the shared variableX. Both threads
read the local clock before and after the write operation, and
they get TS1, TS2, TS3 and TS4, respectively. The final value
ofX is checked after both T1 and T2 exits.

If X is 2, S7 in T2 must be later than S2 in T1, so we can
infer S1 � S2 � S7 � S8. At the time that S1 reads the local
clock for TS1, the value of the local core is TS1 + d. There-
fore, we have TS1 + d < TS4, that is

d < TS4� TS1 ðif Read X returns 2 in T0Þ: (1)

Similarly, if the value of X read by thread T0 is 1. We can
infer that S6 � S7 � S2 � S3, and TS3 < TS2+ d

d > TS3� TS2 ðif Read X returns 1 in T0Þ: (2)

We repeat the above process and obtain as many pairs of
hTS4i; TS1ii and hTS3i; TS2ii as possible. According to the
argument above, the value of d is less than any TS4i � TS1i,
and greater than any of TS3i � TS2i . That is

max
i

ðTS3i � TS2iÞ < d < min
i
ðTS4i � TS1iÞ: (3)

As mentioned in Section 3.1, to ensure the execution
order of the above instructions, we have to add some fences
or similar instructions in the testing program. We designed
four implementations for x86 platforms.

In Fig. 5a, we use the sequence of instructions sequence
introduced in Fig. 2c, while in Fig. 5b, we use the CPUID
instruction instead. CPUID instruction is a serializing
instruction that forces the processor to complete all modifi-
cations to flags, registers, and the memory by earlier instruc-
tions, and drain all buffered writes to the memory before the
next instruction is fetched and executed [7]. In Fig. 5c, we
make use of the atomic instruction XCHG. This implementa-
tion does not guarantee that the GV of writing X happens
before RDTSC, so we need to check whether it does. Fig. 5d
is similar to that in Fig. 5c except it uses CMPXCHG instruc-
tion instead. Figs. 5c and 5d may generate a smaller range
for d because none of the time-consuming MFENCE or

Fig. 3. Determine orders by local clock.

Fig. 4. Local clock difference tester.

Fig. 5. Difference tester implementation.

1116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

CPUID instructions is used. The efficacy of these codes
depends on the hardware implementation, but we can
always run all of them many times to obtain a minimum
range of d. In Section 6.4.1, we present an empirical study
on using this scheme to calculate the range of d.

3.3.2 Scheme 2-Use Statistical Tests

Although the range obtained by Scheme 1 can be used to
identify the order of most shared accesses, we would still
like to have a smaller range.

In Scheme 1, when the operations X=1 and X=2 are exe-
cuted very closely in time, we may get a smaller range of d.
However, even in such cases, the range cannot be close to 1.
The reasons include the followings:

(1) The time needed for RdTC and fence instructions.
(2) The time needed to flush the write buffer.
(3) The time needed for cache coherence protocol.
In order to reduce their impact, we propose another

scheme based on statistics. Fig. 6 shows our statistic tester.
It has two worker threads (T1, T2) and a trigger thread (T0).
They are bound to 3 different cores. The initial value of flag
is 0, so T1 and T2 will spin on flag (see Fig. 6). After thread
T0 writes 1 to flag, T1 and T2 will break from the while loop
and read the local clock, hopefully about the same time. The
difference of their readings (TS2 - TS1) is the d we want.
However, in practice, the RdTCs in T1 and T2 are unlikely
to be executed at the same time for the following reasons:

(R1) The while loop contains at least 3 instructions: load,
compare and branch. When T0 sets flag to 1, T1 and T2 may
not execute the same instruction and will not exit the while
loop at the same time.

(R2) The cache coherence protocol will serialize the
worker threads. In most modern processors, each core has
private L1 and L2 caches. The processor uses a coherence
protocol (e.g., MESIF on Intel x86) to maintain data coher-
ence among cache memories. When two cores simulta-
neously access the same cache line due to cache misses, they
obtain the data serially [13]. Therefore, one of the cores will
suffer a delay. Besides, according to the thread-core map-
ping strategy, data transfer distance between T1, T2 and T0
may be different. When T0 sets flag to 1, T1 and T2 may not
know it at the same time.

(R3) Scheduling and interruptions may occur between
the while loop and RdTC.

(R4) When T1 and T2 exit the while loop, I-Cache Miss or
Page Fault may occur.

For the test program in Fig. 6, the effect of the above fac-
tors needs to be reduced. Putting the codes of while loop
and RdTC in the same cache line can avoid the case of (R4).
To avoid the case of (R3), we need to prevent the kernel to

schedule other threads to the cores that T1 and T2 are run-
ning by loading a kernel module. If an interruption occurs
during the execution of the test program, it will notify the
test program that its result is invalid.

On most modern processors (x86, Power, SPARC and
MIPS, etc.), each processor has several cores. Suppose in
Fig. 6, T0 and T2 are bound to the same processor but differ-
ent cores, and T1 is bound to a different processor. T2 will
get the new value of flag sooner than T1 because it is closer
to T0. If we want to calculate the d of the two cores on the
same processor, T1 and T2 need to be bound to two cores on
the same processor. Otherwise, T0 can be randomly bound
to either of the two processors in each run.

To describe the effect of (R1), we use " to represent that
the time lag between T1 and T2 when they execute the
load instruction to get the new value of flag. The value of
" is a positive number when T1 executes the load instruc-
tion sooner. Otherwise, the value is a negative number.
But the absolute value of " is less than the total cycles of
executing the load, compare and branch instructions. To
describe the effect of (R2), we use I to represent the time
lag between core1 (T1 runs on it) and core2 (T2 runs on
it) to get the new value of flag when core0 (T0 runs on it)
sets the flag. The value of I is a positive number. We also
use d to represent whether core1 (T1 runs on it) gets the
new value of flag sooner than core2 or not. The value of d
is either �1 or 1. We run the test program multiple times.
Assume <TS1i; TS2i > is the timestamp pair of the i-th
run, we have TS2i ¼ TS1i þ dþ "i þ diIi, or

dþ "i þ diIi ¼ TS2i � TS1i: (4)

In Equation (4), if T1 obtains the new value of flag first,
the value of di is 1. Otherwise, the value of di is -1. We have

dþ "i � Ii ¼ TS2i � TS1i ðith T2 gets data firstÞ
dþ "j þ Ij ¼ TS2j � TS1j ðjth T1 gets data firstÞ:

�

(5)
After the test program runs many times, we have

dþ 1
r2

Xr2
l¼1

"il �
1

r2

Xr2
l¼1

Iil ¼
1

r2

Xr2
l¼1

ðTS2il � TS1ilÞ

dþ 1
r1

Xr1
s¼1

"js þ
1

r1

Xr1
s¼1

Ijs ¼
1

r1

Xr1
s¼1

ðTS2js � TS1jsÞ:

8>>>><
>>>>:

(6)

Assume in r2 runs, i1; i2; � � � ; ir2 , T2 obtains data first,
while in the r1 runs, j1; j2; � � � ; jr1 , T1 obtains data first.

When T0 set flag to 1, the instructions that T1 and T2 are
executing will be different. The effects of (R1) on T1 and T2
are the same, implying that the expectation value of " is 0. If
the test program runs a sufficiently large number of times,
we can assume that the average of " is 0, that is
1
r2

Pr2
l¼1 "il � 1

r1

Pr1
s¼1 "js � 0. According to our thread-core

mapping strategy, if the number of runs is large enough, the
delay caused by (R2) is the same for both T1 and T2, that is
1
r2

Pr2
l¼1 Iil � 1

r1

Pr1
s¼1 Ijs . Therefore, Equation (6) can be con-

verted to

d � 1

r2

Xr2
l¼1

ðTS2il � TS1ilÞ þ
1

r1

Xr1
s¼1

ðTS2js � TS1jsÞ
 !

=2: (7)

Fig. 6. Statistic tester.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1117

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

By Wiener-Khinchin theorem for large numbers [35],
when the number of test increases to a very large number,
the value of d in Equation (7) will approach a constant.
Therefore, we can use the test program in Fig. 6 to estimate
the difference of the local clocks on the cores to which T1
and T2 are bound.

To use the Equation (7), we need to know the thread in
Fig. 6 that obtains the new value of flag first. We run the test
program in Fig. 6 20 million times. A distribution of
TSd ¼ TS2� TS1 is shown in Fig. 7.

There are two spikes in Fig. 7. In the i-th run, TSdi ¼
TS2i � TS1i ¼ dþ "i þ diIi. The value of d is fixed. And the
value of "i is affected by 3 instructions, whose absolute
value is less than 10 cycles. In Fig. 7, the distance of the two
spikes is more than 100 cycles. Therefore, the two spikes are
generated by dI. We regard the middle of the two spikes in
Fig. 7 as the boundary. If the value of TSd is on the right
side of this boundary, it implies that T1 obtains data first,
and the value of di is 1. Otherwise, the value of di is -1.

Using the above equations, we get an approximation of d
(marked as D). We still need to calculate the confidence
interval of D. According to the central-limit theorem, the
values of D is close to a normal distribution, that is
D � Nðm; s2Þ. The expectation value of this distribution is
the approximate difference of the local clocks on different
cores. Assume D1; D2; � � � ; Dn are n samples, and �D and S2

are the sample average and variance respectively. To a
given significance level a, we expect to find an interval that
contains the expectation m with a probability 1� a. Because
the variance s2 of this distribution is unknown, we use sam-
ple variance instead of the real variance

P �D� Sffiffiffi
n

p ta
2
ðn� 1Þ � m � �Dþ Sffiffiffi

n
p ta

2
ðn� 1Þ

� �
¼ 1� a:

(8)

Assume the sample size is n, the expectation m (i.e., the
difference value d) has a confidence interval with the confi-
dence coefficient 1� a

�D� Sffiffiffi
n

p t a
2
ðn� 1Þ; �Dþ Sffiffiffi

n
p t a

2
ðn� 1Þ

� �
: (9)

An experimental analysis of using this scheme is given in
Section 6.4.2. In this experiment, we calculate the confidence
interval of d under different confidence coefficients.

3.4 Local Clock Overflow

As mentioned earlier, the clocks on most processors (except
SPARC and MIPS) have 64 bits, which will take more than
ten years to overflow with the current clock rates. The 63-bit
SPARC clock also takes several years. It is enough for most

applications. But, for a 32-bit MIPS clock, an overflow can
occur every few seconds. Therefore, overflow must be con-
sidered and handled.

Assume the overflow period of a clock is P, we must
ensure that the interval between two adjacent records is less
than P. To do so, we only need to compare the value of two
adjacent records TSCnþ1 and TSCn: If TSCnþ1 � TSCn < 0,
the clock has overflowed; if TSCnþ1 � TSCn > 0, it has not.

We scan all the records during the offline analysis. When
we find a clock overflows, an overflow counter is increased
by 1. When we replay shared accesses among threads, both
the clock and the overflow counter are taken into account.

However, since the MIPS clock overflows every few sec-
onds, an interruption or task scheduling maymake the inter-
val between two records larger than P. In practice, the time
used to handle an interruption is short inmost cases (inmilli-
seconds), but task rescheduling will affect the accuracy if
dozens of threads need to be scheduled on the same core. In
our measurements, we did not find any two adjacent records
whose interval is more than 1 second. Using a kernel module
to record the wall clock time of the task scheduling and inter-
ruptions can also resolve this problemproperly.

4 REPRODUCING BUGS USING LOCAL CLOCKS

In this section, we select two well-known bug reproducing
systems PRES [18] and CLAP [6], and show how to apply our
approach to them. As mentioned in Section 1, we select them
because PRES relies on an expensive scheme to record the
global order of some special events. CLAPdepends on sophis-
ticated offline analysis to compute the buggy interleaving
albeit with very low recording overhead. They represent the
key dilemma of such schemes: either incurring large record-
ing overhead or spending long analysis and replay time.

For PRES, its bottleneck is the recording phase. We
record the timestamps using local clock instead of the
expensive global order, and infer the global order of those
special points as described in Section 3. Our experiments
show that without recording global order, the overhead can
be reduced by up to 85.24 percent.

For CLAP, our goal is to shorten the constraint solving
time. Besides recording the execution paths, we select
some key points to record their local timestamps, and infer
their global order by an efficient offline analysis. These key
points can be selected at function call sites or entry/exit
points of loops. We combine the inferred global order and
the original constraints as new inputs to the SMT solver.
Our experiments show that, for most benchmarks, more
than 95 percent of shared accesses can be ordered.

For the remaining unordered shared accesses, we can
further reduce the solving complexity with the help of local
timestamps. Assume the memory operations in Fig. 8 access
the same shared variable. In Fig. 8a, for R11 in thread T1,
CLAP needs to infer the order between R11 and all the
writesðW21; � � � ;W2mÞ in thread T2. However, in Fig. 8b, if
we could know RdTC3 � RdTC1 and RdTC2 � RdTC4 from
local timestamps, we only need to infer the order of R11,
W21 and W22. This could reduce a lot of constraints and
achieve less solving time.

In addition, for every shared access, CLAP assigns an
integer as its global order number. With the help of local
timestamps, we can restrict the range of these global order

Fig. 7. A distribution of TSd.

1118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

numbers and shorten the solving time. In Fig. 8c, the global
order numbers of the five shared accesses are all within the
interval [1,5]. If from the local timestamps, we know RdTC1
� RdTC2 � RdTC3 � RdTC4 � RdTC5 � RdTC6 � RdTC7,
we can infer that W1 � W2 � R1/W3 � R2. It can reduce the
range of their global order numbers to [1,1], [2,2], [3,4], [3,4],
and [5,5], respectively.

5 IMPLEMENTATION DETAILS

According to the schemes described in PRES [18] and CLAP
[6], we implemented two systems, called PRES-impl and
CLAP-impl, on the Linux/X86_32 platform. We believe our
method can be applied to other platforms that have the sup-
port of the local clocks. We then apply ReCBuLC to these
two systems, called PRES-tc and CLAP-tc, respectively. To
apply our approach to PRES and CLAP, we need to bind
each thread to a different core on the same processor during
the record phase. We then use the technique described in
Section 3.3 to calculate the range of d in advance. The aim of
binding threads to cores is just to simplify two aspects of
the works: 1) the recording of the TSC values; 2) the order-
ing of TSC values. If we choose not to bind threads, we may
need to record the thread migration when a thread is sched-
uled to run on a different logical core. Besides the recording
changes, the ordering job becomes more complicated. This
is because the recording TSC values of each thread could
come from many logical cores. But we should note that the
binding method disturbs the normal cpu scheduling of the
operating system, so it could introduce the extra overhead
during the record phase.

In this section, we mainly focus on the implementa-
tion difference between the original systems and our re-
implemented systems (i.e., PRES-impl and CLAP-impl).

5.1 The Implementation of PRES-impl and PRES-tc

The original PRES is implemented using Intel’s general
dynamic instrumentation tool, Pin [9], for both recording
and replay. Different from the original implementation, we
use our specialized static binary instrumentation tool for a
better performance. The tool is implemented as a shared
library on the Linux platform. It is loaded into the tested
program’s process using the environment variable LD_
PRELOAD. In the constructor function of this shared library,
it first finds all of the code in the current process by parsing
the /proc/self/maps file. It then disassembles the code, recog-
nizes basic blocks and recognizes all functions. It needs the
compiler to provide more precise information (e.g., need ‘-g’

option in gcc) to recognize functions when compiling the
tested programs. It then allocates the code cache area and
places the instrumented code there. An important design is
to make sure that all code pointers are not mutated, i.e., they
should all point to the original targets. For example, the
return addresses that are pushed by the call instructions
onto the stack should point to the original return targets. To
guarantee the correctness, it dynamically redirects the code
pointers to their respective addresses in the code cache when
they are de-referenced. This is implemented by instrument-
ing all indirect branch instructions (i.e., call returns, indirect
calls and indirect jump instructions) to perform runtime
address translation. Meanwhile, it also relocates the direct
branch instructions (e.g., jcc’s, direct function calls and direct
jumps) when generating code into the code cache. Moreover,
the signal handlers are registered at the locations in the code
cache instead of the original code area. Using our instrumen-
tation framework, most binary features can be supported
(e.g., the self-referencing code1).

Based on our static instrumentation tool, we can perform
instrumentation at any given point when generating code
into the code cache. According to the scheme described in
PRES, PRES-impl records the global order (implemented by
using the spin locks) among synchronization points
(SYNC), function calls (FUNC), basic blocks (BB), and mem-
ory operations (RW) during the online recording phase.
Instead of recording the global order, PRES-tc only records
the local timestamps. In the offline exploration phase (i.e.,
replay phase), PRES-impl and PRES-tc also use this static
instrumentation tool. They also use the same synchroniza-
tion method (implemented by using the spin locks) to
schedule the threads.

5.2 The Implementation of CLAP-impl and CLAP-tc

The original CLAP is implemented based on LLVM and
KLEE. It instruments the source code to record the path
information. When running the tested program, it collects
all of the threads’ local paths. Then, CLAP uses KLEE offline
to performs symbolic execution along the paths to collect
and encode all of the necessary execution constraints (e.g.,
the path constraints, the bug manifestation constraints and
the read-write constraints) over the order of the shared
access points. Different from the original implementation,
CLAP-impl uses the static instrumentation tool mentioned
above to collect each thread’s local paths by instrumenting
all of the branch instructions and recording the jump tar-
gets. In the offline analysis phase, we use the dynamic
binary translation technique to interpret the instructions by
following the profiled paths and perform the symbolic exe-
cution, which is similar to the concolic execution [4], but the
symbolic variables are the values of read/write accesses to
the shared data and the orders of the shared accesses. This
interpreter is implemented as a shared library. We use the
environment variable LD_PRELOAD to intercept the tested
program’s libc_start_main routine (within which the main
function is called). In the intercepted routine, the interpreter
starts at the entry of the libc_start_main by following the

Fig. 8. Constraints reduction.

1. Self-referencing code usually treat the code pointers as data
pointers and use these data pointers to read the content. For example,
the libunwind library [8] uses the return address to read its own code
and checks whether the instructions are PLT encoded or not.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1119

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

profiled path. During the symbolic execution, we encounter
similar implementation challenges as in CLAP, such as
shared memory access identification and symbolic address
resolution. We use similar approaches to address these chal-
lenges. For example, in symbolic address resolution, we first
analyze the base address of the given symbolic address, and
then find the target object by searching the DWARF infor-
mation that is generated by the compiler when compiling
the source code with the ‘-g’ option [5]. For any read or
write to this object, the loaded or stored value is resolved
from each element in this object with a set of constraints.
Finally, we merge all these constraints and use the SMT
solver to solve them.

There are two main differences in CLAP-tc compared to
CLAP-impl: 1) CLAP-tc instruments the code to record the
local timestamps at runtime; 2) CLAP-tc performs the con-
straints reduction by using these local clocks (discussed in
Section 4) in the offline analysis phase. To balance the
recording overhead and the effectiveness of the constraints
reduction, we only instrument to record the local time-
stamps at the FUNC, LOOP and FUNCLOOP levels instead
of the Basic Block level. In FUNC, the recording is done at
the entries and exits of functions. In LOOP, the recording is
done at the loop entries, exits and back edges. In FUN-
CLOOP, it is a combination of FUNC and LOOP.

6 EXPERIMENTS

In this section, we evaluate the performances of PRES-impl/
PRES-tc andCLAP-impl/CLAP-tc. Table 1 shows a summary
of the platform used. We select several bugs in real multi-
threaded programs (Table 2) that include some widely-used
applications on servers and desktop, and also some scientific
programs. They cover common concurrency bugs such as
atomicity violation (AV) and order violation (OV).

In this section, we compare PRES-tc/CLAP-tc with
PRES-impl/CLAP-impl. In the experiments, the perfor-
mance of Apache and Cherokee is measured by their

throughput, and the others are by the execution time. Sys-
tem library routines rarely access shared variables and
their accesses can be inferred from their arguments easily,
so we do not consider them. In Sections 6.1 and 6.2, we
use the basic solution in Fig. 2c to record the local clocks.
And in Section 6.3, we evaluate the effectiveness of the two
optimizations shown in Figs. 2d and 2e.

6.1 Evaluating PRES-impl and PRES-tc

PRES-impl records the global order of certain operations,
while PRES-tc records their local timestamps. Fig. 9 shows
the normalized execution time of PRES-impl to PRES-tc
instrumented at the synchronization point, function, basic-
block, and memory operation level. The baseline is the
native execution time.

PRES [18] can reproduce all of the bugs at the FUNC
level within 1,000 tries. At the BB level, PRES reproduces
all of the bugs within 10 tries. Taking recording overhead
and the number of replays needed into consideration,
instrumentation at these two levels seems reasonable for
PRES-impl. PRES-tc reduces the recording overhead from
320.63 percent in PRES-impl to 133.48 percent at the FUNC
level on average. At the BB level, the recording overhead is
reduced from 1730.05 to 688.34 percent.

The main reason for the improvement is that PRES-tc
avoids synchronization and allows each thread to record
local timestamps concurrently. Take LU as an example,
56.49 and 64.53 percent of the recordings in PRES-tc are
done concurrently at the FUNC and the BB levels, respec-
tively, and thus 62.44 and 69.24 percent of the recording
overheads are reduced.

At the SYNC level, the overheads of the two systems are
similar. This is because the number of synchronization

TABLE 1
Platform Details

CPU Intel Xeon E7-4807, 6 cores, 1.87 GHz
Processors 4
Level 1 Cache (I/D) 6 * 24K / 6 * 24K
Level 2 Cache 6 * 256K
Level 3 Cache 18M
Memory 16G
OS Linux 2.6.32
Compiler GCC 4.6.0
SMT Solver Z3 [28]

TABLE 2
Benchmarks

TYPE BENCHMARKS DESCRIPTION BUG TYPES

Server
Apache HTTPD [30] Web server AV

Cherokee [31] Web server AV

Desktop
application

PBzip2 Compressor OV
Pfscan File scanner AV
Aget HTTP/FTP

downloader
AV

Scientific
application
(SPLASH-2)
[29]

Barnes Barnes N-Body
algorithm

OV

LU LUmatrix
multiplication

OV

Radiosity Graphics rendering OV

Fig. 9. Normalized exec. Time of PRES-impl/PRES-tc.

1120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

operations is very small, and the recording overhead is hid-
den by the time-consuming synchronization operations.
During the execution of LU with default inputs, it has more
than 3 million function calls, but only 300 synchronization
operations.

For PBZIP2 and AGET, their overheads are almost the
same. The reason is that the main workload of PBZIP2 and
AGET is compressing and downloading data using system
library routines, but we do not instrument those routines as
mentioned earlier.

PRES-tc determines the order of shared memory accesses
by a range of d. Compared with PRES-impl, it will incur a
small amount of unordered accesses at the recording points.
Table 3 shows the percent of them to the total accesses and
the number of tries in both PRES-impl and PRES-tc. PRES-
tc_P and PRES-tc_S use the ranges of d calculated by the
two schemes described in Section 3, respectively. We can
see from these data that the percent of the unordered
accesses is less than 1 percent at BB, FUNC, and SYNC lev-
els, which is a very small percentage of all accesses. Besides
LU at SYNC level and AGET at BB level, we can see that
PRES-tc needs no more tries than PRES-impl. This is
because the goal of PRES is to reproduce bugs, and for most
concurrency bugs, they are caused by only a handful of
shared accesses [1]. For LU at RW level, although there are
19.35%�25.50% unordered shared memory accesses, the
bug can still be reproduced in one try. That is because the
bug in LU is caused by invalid synchronization operations,
and the order of accesses determined by local timestamps is

enough to reproduce this bug. But for LU at SYNC level
and AGET at BB level, we tried more replay attempts in
PRES-tc than in PRES-impl. This is because the unordered
access affected the successful replay in these two bench-
marks. As we only keep two places of decimal digits after
the decimal points for additional unordered accesses
(Add_UO) in the table, it appears as if there is no unordered
access. But unordered accesses did exist.

Fig. 10 shows the recording overhead of PRES-impl and
PRES-tc with different numbers of threads. When the num-
ber of threads increases, the overhead of PRES-impl
increases more quickly in most cases because the lock is
more frequently accessed. For PRES-tc, the thread-private
recording benefits its scalability. For LU at the FUNC level,
56.49, 77.09, and 83.27 percent of the recordings are done
concurrently when there are 4, 8, and 16 threads, respec-
tively. With more threads, a proportionately higher percent-
age of the recording time will be done concurrently.

6.2 Evaluating CLAP-impl and CLAP-tc

CLAP uses an SMT solver to reproduce the buggy interleav-
ings, but the floating-point operations supported by SMT
solvers are limited. The bugs in BARNES, LU and RADIO-
SITY are related to floating point operations. CLAP does not
use them as benchmarks. Therefore, in CLAP-impl, we use
these three benchmarks to measure the recording slowdown
only. Furthermore, CLAP uses a well-designed test case
Racey [24] that contains massive data races and is very
likely to produce a different result when the interleaving is

TABLE 3
Reproducing Tries

Benchmarks

SYNC FUNC BB RW

PRES-impl
PRES-tc_S /
PRES-tc_P

impl tc_S / tc_P impl tc_S / tc_P impl tc_S / tc_P

Tries Add_UO Tries Tries Add_UO Tries Tries Add_UO Tries Tries Add_UO Tries

APACHE 69 0.00%/0.00% 69/69 5 0.01%/0.01% 5/5 1 0.02%/0.07% 1/1 1 0.05%/0.09% 1/1
CHEROKEE 46 0.00%/0.00% 46/46 21 0.00%/0.00% 21/21 8 0.00%/0.00% 8/8 1 0.02%/0.03% 1/1
PBzip2 3 0.00%/0.00% 3/3 3 0.00%/0.00% 3/3 2 0.00%/0.00% 2/2 1 0.00%/0.00% 1/1
PFSCAN 32 0.00%/0.00% 32/32 11 0.00%/0.00% 11/11 1 0.05%/0.18% 1/1 1 2.94%/4.42% 1/1
AGET 14 0.00%/0.00% 14/14 9 0.00%/0.00% 9/9 1 0.00%/0.00% 3/3 1 0.00%/0.00% 1/1
BARNES 12 0.00%/0.00% 12/12 4 0.00%/0.00% 4/4 1 0.00%/0.00% 1/1 1 0.24%/0.36% 1/1
LU 3 0.00%/0.00% 10/10 6 0.04%/0.15% 6/6 1 0.27%/0.79% 1/1 1 19.35%/25.50% 1/1
RADIOSITY - 0.00%/0.00% -/- 98 0.00%/0.03% 98 1 0.07%/0.21% 1/1 1 3.10%/4.88% 1/1

Add_UO means the additional unordered accesses.

Fig. 10. Scalability of PRES-impl/PRES-tc. The y-axis is normalized exec. time, and in the 4 lower sub graphs are logarithmic.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1121

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

different. CLAP uses it to show its capability. We also use
Racey to evaluate CLAP-tc. For better performance, the
range of d used by CLAP-tc is calculated using Statistics
Testing (see Section 3.3).

Fig. 12 shows the recording overhead of CLAP-impl and
CLAP-tc at different instrumentation levels. FUNC, LOOP
and FUNCLOOP represent the different instrumentation
levels. In Fig. 12, we can see that the slowdown caused by
recording in CLAP-tc is 101%�142% of CLAP-impl, and
mostly less than 110 percent.

Fig. 11 shows the solving time of CLAP-impl and CLAP-
tc at different instrumentation levels. From small to large,
each benchmark is tested with 5 different inputs. During
replays, for the input constraints, we can get the results
from the SMT solver first and combine the results with the
original input as a new input. The time the solver takes to
solve the new input is approximated to be the minimum
solving time, and we call it near-optimal solving time
(NOST). In Fig. 11, we show the ratios of CLAP-impl and
CLAP-tc to NOST. CLAP-tc records the local timestamps at
three different levels.

Fig. 11 shows that, compared to CLAP-impl, CLAP-tc
reduces solving time by 84.66 percent �99.99 percent. This
is because the orders of most shared memory accesses are
determined by local timestamps. In PBZIP2 at the FUN-
CLOOP level, the local timestamps determine more than
99 percent of the orders. This reduces the solving time sub-
stantially. Furthermore, with larger inputs, the solving time
of CLAP-impl increases much more quickly than that of
CLAP-tc. In PBZIP2, the solving time of CLAP-impl with
the largest input is about 1000X to the smallest input, while
the ratio of CLAP-tc is only 4X.

On the other hand, for most benchmarks, the solving
time of CLAP-tc is less than 10X of NOST. Especially, the
solving time of AGET is nearly the same as NOST. In our
experiments, NOST of all benchmarks is at most several sec-
onds for all benchmarks.

In studying Figs. 11 and 12, we can see that the lower
the instrumentation level is, the less solving time but the
more overhead is observed. At the FUNC and LOOP lev-
els, the loop bodies may contain complicated function
calls, and a function body may contain many loops. This
makes their solving time much longer than that at the
FUNCLOOP level. The recording overhead at the FUN-
CLOOP level is a bit more than that at the FUNC and
LOOP level. Altogether, we believe FUNCLOOP is a suit-
able level for instrumentation.

To show the effectiveness of ReCBuLC in reducing the
solving time, we give overall results of CLAP-impl and
CLAP-tc at the FUNCLOOP level in Table 4. There are two
types of unknown variables in CLAP: one is the values
returned by read accesses to the shared variables and the
other is the order of those accesses to the shared variables in
the to-be-computed schedule [6]. Due to the non-determinism
in multi-threaded programs, there could be a lot of buggy
executions to trigger the same bug. CLAP-impl and CLAP-
tc may collect all buggy executions in the online phase that
could affect the number of shared data accesses (#SDAs)
and the number of unknown variables (#UVs). From the
table, we can see that besides Racey, the results of #SDAs
and #UV are different between CLAP-impl and CLAP-tc.
This is because the number and the order of shared
accesses in each thread execution are deterministic in
Racey. We also give the results of the size of constraints
(#Constraints) in CLAP-tc without using the local time-
stamps to perform reduction, i.e., CLAP-impl and CLAP-tc
use the same method to construct constraints. The result
shows that #Constraints in CLAP-impl and un-reduced
#Constraints in CLAP-tc are different, but they are still in
the same order of magnitude that are not enough to affect
the significant change in the solving time in Fig. 11. The
main reason is the significant constraint reduction from
using the local timestamps. To show the effectiveness of
the constraints reduction, we give the results of constraint
reduction in CLAP-tc. We can see that besides Racey,
CLAP-tc achieves very good constraint reduction in the
remaining benchmarks (reducing more than 93 percent
constraints). Fig. 11 also shows that CLAP-tc requires

Fig. 12. Recording overhead of CLAP-impl/CLAP-tc. The overhead is
normalized to the non-instrumented programs.

Fig. 11. Normalized solving time of CLAP-impl/CLAP-tc. Each benchmark is evaluated with 5 inputs.

1122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

much less solving time on these benchmarks, i.e., another
indication on the effectiveness of its constraint reduction.
In Racey, most addresses of the read and the write opera-
tions are calculated by shared variables. In such cases, if a
read happens before a write, it is difficult to infer whether
the read and the write access the same shared variable or
not. Thus, a few redundant constraints remain in the input
for the SMT solver. Even so, the solving time of CLAP-
impl is about 5X-100X longer compared to CLAP-tc, which
also shows the effectiveness of using the local timestamps.

6.3 Evaluating Different Implementations of
Recording Local Timestamps

Fig. 14 shows the recording overhead of different imple-
mentations in PRES-tc with 16 threads against the Basic
Solution in Fig. 2c. Fig. 13 shows the recording overhead of
different implementations in CLAP-tc against the Basic
Solution in Fig. 2c. BASIC shows the Basic Solution in Fig. 2c.
CAS+TSO shows the optimization that uses the CAS
instruction with a TSO model in Fig. 2d. RDTSCP+CAS
+TSO shows the optimization that uses the RDTSCP
instruction to eliminate the FENCE instruction in Fig. 2e. As
shown in Figs. 14 and 13, we can see that the optimization

of CAS+TSO can reduce the recording overhead significantly.
It is because the overhead of FENCE instructions is quite high
and reducing them can improve the performance signifi-
cantly. Although RDTSCP+CAS+TSO can reduce the over-
head further, the gain is small. This is because the time
difference between theRDTSCP instruction and the (LFENCE;
RDTSC) pair is small. Both methods ensure that all prior
instructions have completed. The subsequent instructions can
be executed ahead of RDTSCP, but it is not allowed in the
LFENCE instruction.

The optimizations of recording local timestamps not only
can reduce the recording overhead in the online phase, but
also can affect the offline analysis. Using these optimizations,
it can introduce more unordered accesses than in the Basic
Solution, especially, when using the finer-grained instrumen-
tation to record the local timestamps. This is because the
optimizations can reduce the execution time and increase the
amount of parallelism. More specifically, it allows more
recorded local timestamps from all threads in unit time and
more pairs of values with differences within the range d. The
more such pairs of values, the more unordered accesses we
will get. Our experimental results substantiate such observa-
tions. Compared with the basic PRES-tc, the optimized

TABLE 4
Overall Results in CLAP-impl and CLAP-tc with the Largest Input in Fig. 11

Benchmarks #Ts #SVs
Results in CLAP-impl Results in CLAP-tc with the FUNCLOOP instrumentation level

#SDAs #UVs #Constraints #SDAs #UVs
#Constraints

BeforeReduction AfterReduction Reduction(%)

PBzip2 4 18 86 117 7,186 91 121 7,315 426 94.18%
AGET 4 30 2,159 2,731 1,812,455 2,203 2,621 1,810,845 22,414 98.76%
PFSCAN 3 13 3,357 4,046 8,461,860 3,581 4,247 8,624,384 550,236 93.62%
CHEROKEE 8 16 75,572 14,211 10,285,234 75,194 13,686 10,036,745 151,527 98.49%
APACHE 16 22 98,243 19,376 12,314,847 99,767 20,253 12,857,583 76,291 99.41%
RACEY 3 3 1,046,706 1,589,379 324,429,525 1,046,706 1,589,379 324,429,525 89,088,347 72.54%

Column 2 reports the number of threads (#Ts). Column 3 reports the number of shared variables (#SVs). Column 4-6 report the results in CLAP-impl - Column 4
reports the number of shared data accesses in the schedule (#SDAs). Column 5 reports the number of unknown variables(#UVs). Column 6 reports the size of the
constraints (#Constraints). Columns 7-11 report the results in CLAP-tc with the FUNCLOOP instrumentation level - Column 9 reports the size of the original
constraints that are not handled by using the local timestamps (BeforeReduction). Column 10 reports the size of the remaining constraints after reduction (After-
Reduction). Column 11 reports how many constraints are reduced (Reduction).

Fig. 14. Recording overhead of different implementation in PRES-tc.

Fig. 13. Recording overhead of different implementation in CLAP-tc.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1123

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

PRES-tc_S/PRES-tc_P didn’t require more reproducing
tries for all programs at all instrumentation levels. But, they
introduced more unordered accesses. For all benchmarks
instrumented at SYNC, FUNC and BB levels, there is not
much difference in the number of unordered accesses
between the basic and the optimized solutions. But for
PFSCAN, LU and RADIOSITY at the RW level, the opti-
mized (RDTSCP+CAS+TSO) PRES-tc_S/PRES-tc_P intro-
duce more additional unordered accesses that are 3.62/
5.70 percent, 23.67/28.59 percent and 5.37/7.08 percent,
respectively. For the experiments using CLAP-tc, the opti-
mized CLAP-tc didn’t introduce more additional unor-
dered accesses due to the coarse-grained instrumentations.
Compared with the basic CLAP-tc, the optimized CLAP-tc
has very similar results in constraints reduction and the
solving time.

6.4 Differences of Local Clocks Among Cores

This section shows the results of our two schemes to calcu-
late the range of d.

6.4.1 Program Testing Scheme

We designed four programs to test the ranges of d. Table 5
shows two of the test results for these programs on the
same cores. In each test, every program executes 10K times.

The test platform and the number of test runs could affect
the results in Table 5. More test runs could generate smaller
ranges. On our test platform, the test program in Fig. 5b gets
a larger range than other programs in Fig. 5. This is because
the implementation of the serializing instructions on this
processor is more time-consuming than others. The results
of the other programs are more or less the same. In Table 5,
the range of d is about 200 cycles. Given two values of local
clock on different cores, if their difference is larger than 200,
we can ensure that its value is smaller in the real (wall) clock.
For example, we can determine the order of S6 and S2 in
Fig. 3. And then we can use it to determine the order of
shared memory operations. If it is smaller than 200, we can-
not give this confirmation. Using it to order shared access
will not bring false positives or false negatives.

6.4.2 Statistics Scheme

Our proposed statistical scheme uses the statistical tester
and Equation (7) to calculate the range of d. To use
Equation (7), we need to know the value of di, and the test
procedure is as follows:

(1) Bind the worker and the trigger threads in Fig. 6
according to Section 3.3.

(2) Run the test program N times, and get N results by
using Equation (4) deltai ¼ dþ "i þ diIi ¼ TS2i �
TS1i.

(3) Build the distribution of deltai according to Sec-
tion 3.3 and infer the value of di in each execution.

(4) Calculate the value of d by Equation (6).
Stability. If the number of test runs of the statistical tester

is large enough, the result of Equation (7) will be stable. We
ran this program continuously for more than 10 days, col-
lected around 100 million results that are shown in Fig. 15.

In this figure, we calculate d every hour, using about
360,000 runs of the statistical tester. In Fig. 15, Stabilitymarks
the value of d that is calculated using the data collected in
each hour, whileAcc_Stabilitymarks the value of d that is cal-
culated using the data from the beginning of the run. From
these data, we can see that, over a long time period (more
than 10 days), the calculated d in each hour are all in the
range of [-0.0885, 0.1827], and their sample variance is
0.001379. Thismeans that the calculated d is very stable.

Confidence Interval. Now, we calculate confidence inter-
val of d under different confidence coefficients using
Equation (9). The confidence interval requires many samples
of d. We calculate d using the method described in Section
3.3 many times, and get d1; d2; d3; . . . ; dM . Each di is the result
of N runs of the program shown in Fig. 6, and is calculated
by using Equation (7) in which N is equal to the sum of r1
and r2. We use these M samples (i.e., d1; d2; d3; . . . ; dM) to cal-
culate the confidence interval by using Equation (9). Finally,
we get the data shown in Table 6.

In Table 6, the higher the confidence coefficient is, the
larger the range is. When the confidence coefficient is fixed,
the values of N and M vary inversely with the confidence
intervals. In practice, we could calculate confidence inter-
vals with different confidence coefficients according to the
target program. Table 6 shows that when the confidence
coefficient is 0.99999, N is 20 and M is 5. The range of the
confidence interval is about 100, which is still smaller than
the range obtained by program testing.

6.5 Detecting the Modification of Local Clocks

In Section 3.2 (Scenario 2), we propose to measure and com-
pare the difference among per-core clocks twice: before and
after the testing, and use the compared result to judge
whether the TSC values have been modified or not by the
software or the firmware. Although we have not encoun-
tered such modification in our experiments, we still give an
experiment that simulates the modification of the TSC val-
ues and shows the difference between the results (the range
d) before and after the TSC change.

TABLE 5
Program Testing Results

Testing Program 1st Test 2nd Test

MIN MAX MIN MAX

Fig. 5(a) -114 112 -116 120
Fig. 5(b) -190 182 -180 188
Fig. 5(c) -128 128 -124 126
Fig. 5(d) -116 120 -120 110
Result -114 112 -116 110

The bold values are the results of choosing a smaller range of d. Fig. 15. Stability of Equation (7).

1124 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

To simulate the modification, we use Intel’s support of
timestamp counter adjustment: 1) Software can reset the
TSC value of a logical core by using the wrmsr instruction to
write to the IA32_TIME_STAMP_COUNTER MSR (we call
it the BASE value); 2) It can also add or substract an offset to
the TSC value to slow down or speed up the counter by
using wrmsr instruction to write to the IA32_TSC_ADJUST
MSR (we call it the OFFSET value). In the program, when
we use the RDTSC or RDTSCP instruction to read the TSC
value, the hardware will return the value: BASE + OFFSET.
The initial value of the IA32_TSC_ADJUST MSR is 0. So we
could set an non-zero value to IA32_TSC_ADJUST MSR on
a logical core to simulate the modification of the TSC values.

In this experiment, we use the Statistics Scheme to evalu-
ate the change of the range d due to its higher precision. We
use the Statistics Scheme to calculate the range d twice. We
simulate the modification by speeding up (add) 1 clock on
the logical core that T2 runs on (see Fig. 6). The results of
the first test are shown in Table 6. Table 7 shows the results
of the second test. We can see that there is an obvious differ-
ence in these two tests with different confidence coefficients
when M is 20 (bold ranges). Hence, using the Statistics
Scheme is quite sufficient to detect such small modification
of local clocks during record-and-replay.

7 DISCUSSION

In this section, we discuss some limitations and possible
future works for ReCBuLC.

Limitations. In this paper, we mainly propose a method
that uses the local clocks to infer the global order in a
multi-threaded program. We did not obtain the real differ-
ence value (d) between any two local clocks. Instead, we
obtain a range of d as tightly as possible. If the difference
between two timestamps from different logical cores is
within this range, we cannot infer their order. So, if the
programmer needs to know the order at any instrumenta-
tion points precisely, ReCBuLC may be not suitable for

such a usage scenario. Nevertheless, it is quite useful in
many real practices. For example, the aim of PRES is to
reduce the required recording points, which can increase
the number of unordered accesses, to get better runtime
performance. CLAP only records the local execution paths.
It doesn’t care the global order during the runtime phase.
ReCBuLC has proven to be quite usable and effective in
such usage scenarios.

Possible future works. For CLAP-tc at the LOOP and FUN-
CLOOP instrumentation levels, we instrument to record the
local clocks at all the loops. If there is no shared data
accesses in a loop, the instrumentation in this loop is
unnecessary. So we plan to recognize the shared data
accesses in the loop and determine if it needs the instru-
mentation. Besides PRES and CLAP, we plan to apply
ReCBuLC to other systems, such as CCI [40] and CoopREP
[41], to lower their recording overhead. For CCI, we plan
to eliminate the use of global clock in CCI-prev scheme.
For CoopREP, we plan to implement a lightweight logging
system by using local clocks. We also plan to look into effi-
cient algorithms that combine ReCBuLC and needed syn-
chronizations to eliminate the effect of unordered accesses
in application programs.

8 RELATED WORK

In most record-and-replay and other bug reproducing sys-
tems, the focus has been on reducing the recording over-
head. However, this is often traded with high offline
analysis cost. Our approach takes advantage of the local
clock to reduce both the recording overhead and the bug
reproducing time.

PRES [18] does not record the global order of all events
during recording, and tries to reproduce bugs by offline anal-
ysis. It only records the global order of some special events,
such as synchronizations, system calls, function calls, basic
blocks, and memory instructions. During offline analysis, it
searches for the buggy interleaving by exploration.

TABLE 6
Confidence Intervals

N 20 50 100

M 5 10 20 5 10 20 5 10 20

0.99 [-5.86, 9.39] [-1.69, 3.66] [-0.63, 1.75] [-1.48, 1.88] [-0.41, 1.08] [-0.25, 0.58] [-1.21, 0.57] [-0.80, 0.39] [-0.29, 0.42]
0.999 [-12.50, 16.03] [-2.95, 4.92] [-1.05, 2.17] [-2.93, 3.34] [-0.77, 1.43] [-0.40, 0.73] [-1.99, 1.34] [-1.08, 0.67] [-0.41, 0.55]
0.9999 [-23.98, 27.51] [-4.45, 6.42] [-1.47, 2.59] [-5.46, 5.86] [-1.18, 1.85] [-0.55, 0.88] [-3.33, 2.68] [-1.41, 1.00] [-0.54, 0.68]
0.99999 [-44.23, 47.77] [-6.29, 8.26] [-1.91, 3.03] [-9.91, 10.31] [-1.70, 2.36] [-0.70, 1.03] [-5.69, 5.04] [-1.82, 1.41] [-0.67, 0.81]

The first column is the confidence coefficient. The first row is the value of N, and the second row is the value of M. M means computing the value of d using M
sample values, each obtained by averaging N runs of the program in Fig. 6.

TABLE 7
Confidence Intervals After Speeding Up One of the Clock on the Logical Core That T2 Runs On (see Fig. 6)

N 20 50 100

M 5 10 20 5 10 20 5 10 20

0.99 [-5.15, 9.84] [-1.03, 4.30] [0.87, 2.44] [-0.61, 2.97] [0.64, 2.16] [0.13, 1.75] [-0.16, 1.37] [0.33, 1.27] [1.10, 1.39]
0.999 [-12.01, 17.16] [-1.78, 5.69] [0.01, 2.96] [-2.18, 4.29] [0.19, 2.58] [0.53, 1.52] [-0.97, 2.12] [-0.20, 1.53] [0.59, 1.63]
0.9999 [-24.31, 27.90] [-4.06, 7.27] [-0.54, 3.44] [-4.54, 6.90] [-0.23, 2.68] [0.49, 1.67] [-2.60, 3.77] [-0.65, 1.96] [0.39, 1.78]
0.99999 [-43.49, 47.94] [-5.53, 8.99] [-1.08, 3.94] [-9.27, 10.94] [-0.62, 3.19] [0.41, 1.97] [-5.02, 6.16] [-0.93, 2.61] [0.46, 1.66]

Bold Ranges shows the significance difference, when compared with the Table 6.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1125

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

Some systems try to reduce the recording overhead by only
recording information that imply the global order of shared
accesses. SMP-Revirt [16] and Scribe [17]make use of the page
protection mechanism. They record the ownership transfer of
pages among threads to infer the order of shared accesses. For
programs with little false sharing, Scribe has good perfor-
mance. However, for programs with significant false sharing,
its recording overhead could be very large. DoublePlay [25]
divides the program into many epochs in time intervals.
Besides concurrent execution, DoublePlay forks new pro-
cesses to run epochs serially at the beginning of every epoch.
It only needs to record the order of epochs, hence, dramati-
cally reduce the recording overhead. If the results of concur-
rent and serial execution are different, a rollback is needed.
For programs with many races, the rollback overhead can be
large. Besides, these systems will affect the behavior of multi-
threaded programs, and some bugsmay never be exposed.

There are also systems that record mostly local informa-
tion to avoid global synchronization. CLAP [6] allows each
thread to record its own execution paths and searches for
buggy interleaving by a SMT solver. ODR [21] reproduces
concurrency bugs by ensuring the same output as in record-
ing runs. It only records the global order of synchronization
operations during execution. During the replay, similar to
CLAP, it generates many interleavings and verifies their
outputs by an SMT solver.

CoreDump [23] makes use of the core dump when a pro-
gram crashes. It records the number of iterations in loops at
run time, and incurs little overhead. Depending on the point
that the error occurs, it searches for a similar point to gener-
ate a right core dump. Comparing the core dumps of these
two points, it tries to explore the buggy interleaving.

LReplay [19] uses global timestamps. It expects future
processors to provide a global clock with a fast access time.
With such a global clock, LReplay only needs to record
orders that cannot be inferred from the global time.

Light [42] proposes a novel idea that recording only the
flow dependence instead of recording the happen-before
access order. Compared with other systems that recording
the access orders, it could lower the performance and space
overhead obviously.

CARE [43] presents an order-based deterministic replay
technique that is capable of reducing the log size. It uses the
value prediction cache to reduce the record cost. This record-
ingmethod could only provide the value-deterministic replay.
To address this problem, CARE presents two heuristics replay
methods tomake it practically useful for debugging.

Castor [44] is also a Record & Replay system that could
provide consistently low overhead recording and real-time
replay for modern multi-core workloads. To record the log
efficiently during the record phase, it also uses timestamps
for contention-free logging. It seeks for synchronizing all
logical processors by using software method in OSes.
Although the software method could not synchronizing the
counters precisely, it claims that such difference of a few
cycles is enough to use the local clock as the global clock in
its usage scenarios. But it ignores that the frequency of the
local clocks could be changed (mentioned in Section 2.2)
during the record phase. That could affect the correctness of
the recorded order. We think it could use our method in
Section 3.2 to avoid such problems.

9 CONCLUSION

In order to reproduce the concurrency bugs in multi-
threaded programs more efficiently, this paper proposes
ReCBuLC, which takes advantage of the local per-core
clocks on modern processors. During the recording phase,
each thread records its own data and local timestamps to
avoid expensive synchronization operations among
threads. The local clocks are used to determine the global
order of shared-resource accesses. We have proposed two
effective schemes to calculate the time difference among
local clocks. Our experiments show that after applying
ReCBuLC to PRES and CLAP, two well-known record-and-
replay schemes, the recording overheads and solving time
can be reduced by 1�85 percent and 84.66�99.99 percent,
respectively.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers whose
suggestions have improved the presentation of our work.
This research is supported by the National High Technology
Research and Development Program of China under grant
2012AA010901, the National Natural Science Foundation of
China (NSFC) under grants 61303051, 61303052, 61332009,
60925009, and 61100011, the Innovation Research Group of
NSFC under grant 61221062. Xiang Yuan, Zhenjiang Wang,
and Jianjun Li did this work when they were in the State Key
Laboratory of Computer Architecture, Institute of Comput-
ing Technology, Chinese Academy of Sciences.

REFERENCES

[1] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes a
comprehensive study of real world concurrency bug character-
istics,” in Proc. 13th Int. Conf. Archit. Support Program. Languages
Operating Syst., 2008, pp. 329–339.

[2] N. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” IEEE Comput., vol. 26, no. 7, 1993, Art. no. 18C41.

[3] SecurityFocus, “Software bug contributed to blackout.” (2004).
[Online]. Available: http://www.securityfocus.com/news/8016

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proc. 10th Eur. Softw. Eng. Conf. Held Jointly 13th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2005, pp. 263–272.

[5] DWARF Version 4 Released. (2010). [Online]. Available: http://
dwarfstd.org/Announcement.php

[6] J. Huang, C. Zhang, and J.Dolby, “CLAP: Recording local executions
to reproduce concurrency failures,” in Proc. 34th ACM SIGPLAN
Conf. Program. LanguageDes. Implementation, 2013, pp. 141–152.

[7] Intel 64 and IA-32 Architectures Software Developers Manual.
(2017, Sep.). [Online]. Available: https://software.intel.com/
en-us/articles/intel-sdm

[8] Libunwind library. (2017). [Online]. Available: http://www.
nongnu.org/libunwind/

[9] A dynamic binary instrumentation tool. (2012). [Online]. Avail-
able: https://software.intel.com/en-us/articles/pin-a-dynamic-
binary-instrumentation-tool

[10] MIPS Architecture For Programmers. (2011, Apr.). [Online]. Avail-
able: https://www.imgtec.com/mips/architectures/mips32/

[11] Power ISA. (2013). [Online]. Available: https://www.ibm.com/
developerworks/community/blogs/fe313521-2e95-46f2-817d-
44a4f27eba32/entry/power_isa_version_2_07_the_latest_on_the_
power_instruction_set_architecture?lang=en

[12] Oracle SPARC Architecture. (2012). [Online]. Available: http://
www.oracle.com/technetwork/server-storage/sun-sparc-
enterprise/documentation/sparc-processor-2516655.html

[13] J. R. Goodman and H. H. J. Hum, “MESIF: A two-hop cache
coherence protocol for point-to-point interconnects,” Univ. of
Auckland, Tech. Rep., 2009, https://researchspace.auckland.ac.
nz/bitstream/handle/2292/11593/MESIF-2004.pdf?sequence=7

1126 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

http://www.securityfocus.com/news/8016
http://dwarfstd.org/Announcement.php
http://dwarfstd.org/Announcement.php
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://www.nongnu.org/libunwind/
http://www.nongnu.org/libunwind/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.imgtec.com/mips/architectures/mips32/
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/power_isa_version_2_07_the_latest_on_the_power_instruction_set_architecture?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/power_isa_version_2_07_the_latest_on_the_power_instruction_set_architecture?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/power_isa_version_2_07_the_latest_on_the_power_instruction_set_architecture?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/power_isa_version_2_07_the_latest_on_the_power_instruction_set_architecture?lang=en
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-processor-2516655.html
https://researchspace.auckland.ac.nz/bitstream/handle/2292/11593/MESIF-2004.pdf?sequence=7
https://researchspace.auckland.ac.nz/bitstream/handle/2292/11593/MESIF-2004.pdf?sequence=7

[14] T. J. Leblanc and J. M. Mellor-Crummey, “Debugging parallel pro-
grams with instant replay,” IEEE Trans. Comput., vol. 36, no. 4,
pp. 471–482, Apr. 1987.

[15] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder,
“Automatic logging of operating system effects to guide
application-level architecture simulation,” in Proc. ACM
SIGMETRICS/Int. Conf. Measure. Modeling Comput. Syst., 2006,
pp. 216–227.

[16] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proc.
4th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ-
ments, 2008, pp. 121–130.

[17] S. Laadan, N. Viennot, and J. Nieh, “Transparent, lightweight
application execution replay on commodity multiprocessor oper-
ating systems,” in Proc. ACM SIGMETRICS/Int. Conf. Measure.
Modeling Comput. Syst., 2010, pp. 155–166.

[18] S. Park, et al., “PRES: Probabilistic replay with execution sketch-
ing on multiprocessors,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2009, 177–192.

[19] Y. Chen, W. Hu, T. Chen, and R. Wu, “LReplay: A pending period
based deterministic replay scheme,” in Proc. 37th Annu. Int. Symp.
Comput. Archit., 2010, pp. 187–197.

[20] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy,
P. M. Chen, and J. Flinn, “Respec: Efficient online multiproces-
sor replay via speculation and external determinism,” in Proc.
13th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2010, pp. 77–90.

[21] G. Altekar and I. Stoica, “ODR: Output-deterministic replay for
multicore debugging,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2009, pp. 193–206.

[22] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Recording and
deterministically replaying shared-memory multi-processor exe-
cution efficiently,” in Proc. 37th Annu. Int. Symp. Comput. Archit.,
2008, pp. 289–300.

[23] D. Weeratunge, X. Zhang, and S. Jagannathan, “Analyzing multi-
core dumps to facilitate concurrency bug reproduction,” in Proc.
13th Int. Conf. Archit. Support Program. Languages Operating Syst.,
2010, pp. 155–166.

[24] M. Xu, R. Bodik, and M. Hill, “A “flight data recorder” for full-
system multiprocessor deterministic replay,” in Proc. 37th Annu.
Int. Symp. Comput. Archit., 2003, pp. 122–135.

[25] K. Veeraraghavan, et al., “DoublePlay: Parallelizing sequential
logging and replay,” in Proc. 13th Int. Conf. Archit. Support Pro-
gram. Languages Operating Syst., 2012, Art. no. 3.

[26] D. Hower and M. Hill, “Rerun: Exploiting episodes for light-
weight memory race recording,” in Proc. 37th Annu. Int. Symp.
Comput. Archit., 2008, pp. 265–276.

[27] J. Huang, P. Liu, and C. Zhang, “LEAP: Lightweight determin-
istic multi-processor replay of concurrent Java programs,” in
Proc. 18th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010,
pp. 207–216.

[28] L. De Moura and N. Bjorner, “Z3: An efficient SMT solver,” in
Proc. Theory Practice Softw. 14th Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2008, pp. 337–340.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. 37th Annu. Int. Symp. Comput. Archit., 1995,
pp. 24–36.

[30] Apache HTTPD. (2016). [Online]. Available: http://httpd.apache.
org/

[31] Cherokee Web Server. (2014). [Online]. Available: http://
cherokee-project.com/

[32] Kernel Source Warning. (2014). [Online]. Available: http://lxr.
free-electrons.com/source/arch/x86/kernel/tsc.c

[33] Temperature Problem. (2010). [Online]. Available: https://lwn.
net/Articles/388188/

[34] SMI Problem. (2010). [Online]. Available: https://lwn.net/
Articles/388286/

[35] WienerCKhinchin theorem. (2017). [Online]. Available: https://
en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem

[36] Memory Ordering. (2017). [Online]. Available: https://en.
wikipedia.org/wiki/Memory_ordering

[37] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera:
Hybrid program analysis for determinism,” in Proc. 34th ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2012,
pp. 463–474.

[38] B. Dutertre and L. De Moura. (2006, Sep.) “The Yices SMT solver.”
[Online]. Available: http://yices.csl.sri.com/tool-paper.pdf

[39] J. N. Gray, “Why do computers stop and what can be done about
it?” in Proc. Fifth Symp. Reliability Distrib. Softw. Database Syst.,
pp. 3–12, Jan. 1986.

[40] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation and sam-
pling strategies for cooperative concurrency bug isolation,” in
Proc. ACM Int. Conf. Object Oriented Program. Syst. Languages Appl.
2010, pp. 241–255.

[41] N. Machado, P. Romano, and L. Rodrigues, “Lightweight cooper-
ative logging for fault replication in concurrent programs,” in
Proc. 42nd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2012,
pp. 1–12.

[42] P. Liu, X. Zhang, O. Tripp, and Y. Zheng, “Light: Replay via
tightly bounded recording,” in Proc. 36th ACM SIGPLAN Conf.
Program. Language Des. Implementation, Jun. 2015, pp. 55–64.

[43] Y. Jiang, T. Gu, C. Xu, X. Ma, and J. Lu, “CARE: Cache guided
deterministic replay for concurrent Java programs,” in Proc. 36th
Int. Conf. Softw. Eng., 2014, pp. 457–467.

[44] A. J. Mashtizadeh, T. Garfinkel, D. Terei, D. Mazieres, and
M. Rosenblum, “Towards practical default-on multi-core record/
replay,” in Proc. 22nd Int. Conf. Archit. Support Program. Languages
Operating Syst., 2017, pp. 693–708. DOI: https://doi.org/10.1145/
3037697.3037751

ZheWang received the bachelor’s degree from the
Beijing University of Technology, in 2012. He is cur-
rently working toward the PhD degree in the State
Key Laboratory of Computer Architecture, Institute
of Computing Technology. His research interests
include dynamic compilation, binary translation
and optimization, and software security.

Chenggang Wu received the PhD degree from
the Institute of Computing Technology, Chinese
Academy of Sciences (ICT CAS), and his
research was supported by National Science
Foundation of China (NSF), the National High
Technology Research and Development Program
of China, and the National Science and Technol-
ogy Major Project of China. He is currently a pro-
fessor with the Key Laboratory of Computer
System and Architecture of ICT CAS. He serves
as the general co-chair of CGO 2013, program

co-chair of APPT 2013, and the program committee member of PLDI
2012, PLC 2012, PPPJ 2014, CGO 2015-2017, PPoPP 2017, and
AMAS-BT. He is serving as the member of Computer Architecture Pro-
fessional Committee of China Computer Federation. His research inter-
ests include the dynamic compilation, including binary translation,
dynamic optimization, bug detection on concurrent program, and soft-
ware security.

Xiang Yuan received the bachelor’s degree from
Shandong University, in 2007 and the PhD
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, in 2015. And
now he is in Huawei Technologies. His research
interests include dynamic compilation, binary
translation, and optimization.

WANG ETAL.: USING LOCALCLOCKS TO REPRODUCE CONCURRENCY BUGS 1127

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

http://httpd.apache.org/
http://httpd.apache.org/
http://cherokee-project.com/
http://cherokee-project.com/
http://lxr.free-electrons.com/source/arch/x86/kernel/tsc.c
http://lxr.free-electrons.com/source/arch/x86/kernel/tsc.c
https://lwn.net/Articles/388188/
https://lwn.net/Articles/388188/
https://lwn.net/Articles/388286/
https://lwn.net/Articles/388286/
https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
https://en.wikipedia.org/wiki/Memory_ordering
https://en.wikipedia.org/wiki/Memory_ordering
http://yices.csl.sri.com/tool-paper.pdf
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3037697.3037751

Pen-Chung Yew has been a professor in the
Department of Computer Science and Engineer-
ing, University of Minnesota since 1994, and was
the head of the department and the holder of the
William-Norris Land-Grant chair professor between
2000 and 2005. He also served as the director in
the Institute of Information Science (IIS) at Acade-
mia Sinica, in Taiwan between 2008 and 2011.
Before joining the University of Minnesota, he was
an associate director of the Center for Supercom-
puting Research and Development (CSRD), the

University of Illinois, Urbana-Champaign. From 1991 to 1992, he served as
the program director of the Microelectronic Systems Architecture Program
in the Division of Microelectronic Information Processing Systems,
the National Science Foundation, Washington, DC. He served as the
editor-in-chief of the IEEE Transactions on Parallel and Distributed Sys-
tems between 2000 and 2005. He has also served on the organizing and
program committees of many major conferences. His current research
interests include system virtualization, compilers and architectural issues
relatedmulti-core/many-core systems. He is a fellow of the IEEE.

ZhenjiangWang received the BS degree in com-
puter science from Tsinghua University, in 2005,
and the PhD degree from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
in 2011, and then joined the State Key Laboratory
of Computer Architecture. And now he is in Hua-
wei Technologies. His research interests include
dynamic compilation, binary translation, and
optimization.

Jianjun Li received the BSdegree in computer sci-
ence from Harbin Engineering University, in 2006,
and the PhD degree from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
in 2012. He is now in Horizon Robotics, Inc. His
research interests include dynamic program analy-
sis, program optimization, and binary translation.

Jeff Huang received the PhD degree from the
Hong Kong University of Science and Technology,
in 2012 and the postdoc degree from
the University of Illinois, Urbana-Champaign, in
2014. He is an assistant professor with the Texas
A&M University. His research focuses on devel-
oping practical techniques and tools for improving
software reliability and performance. He has pub-
lished extensively in premiere software engineer-
ing conferences and journals such as ACM
Transactions on Software Engineering and Meth-
odology, PLDI, OOPSLA, ICSE, FSE, ISSTA,
etc. He is a member of the IEEE.

Xiaobing Feng joined the Institute of Computing
Technology, Chinese Academy of Sciences since
July, 1999. He was working there as an assistant
professor, associate professor and then the direc-
tor of Lab of Andance Compiling Technology. He
is now a professor, doctoral advisor and the vice
director of Key Laboratory of Computer System
and Architecture, ICT. He was one of the main
contributors of “Autopar” (which is a parallel com-
piler for dawning parallel computing systems)
and “ParaVT” (which is a parallel program behav-

ior and performance events monitor tool for dawning parallel computing
systems). He held the project of developing early versions of binary
translation from “X86/Linux” to “LOONGSON/Linux”. He also held the
project of developing and implementing of compiler and related tools for
micro-architectures, such as LOONGSON 2E and LOONGSON 3A.

Yanyan Lan received the BE degree in statistics
from Shandong University, Jinan, China, in 2005
and the PhD degree in probability and statistics
from the Institute of Applied Mathematics, Acad-
emy of Mathematics and System Sciences,
Chinese Academy of Sciences, Beijing, China, in
2011. She is currently an associate professor in
the Institute of Computing Technology, Chinese
Academy of Sciences. She leads a research
group working on Big Data and Machine Learn-
ing. Her current research interests include

machine learning, web search and data mining, and big data Analysis.
She has published more than 30 papers on top conferences including
ICML, NIPS, SIGIR, WWWet al., and the paper entitled “Top-k Learning
to Rank: Labeling, Ranking, and Evaluation” has won the Best Student
Paper Award of SIGIR 2012.

Yunji Chen received the bachelor’s degree from
the Special Class for the Gifted Young, University
of Science and Technology of China, Hefei,
China, and the PhD degree in computer science
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences, Beijing, China, in
2002 and 2007, respectively. He is currently a full
professor with ICT. His current research interests
include parallel computing, microarchitecture,
and computational intelligence. He has authored
or co-authored one book and more than 60

papers in the above areas. He was a recipient of the Best Paper Award
from ASPLOS’14 and MICRO’14 for the investigations in neural network
accelerators.

Yuanming Lai received the BS degree in digital
media technology from the Central China Normal
University, in 2013, and the master’s degree in
pattern recognition and intelligence system from
the Huazhong University of Science and Technol-
ogy, in 2016. Now he is in the Institute of Comput-
ing Technology, Chinese Academy of Sciences.
His research interests include information secu-
rity and machine learning.

Yong Guan received the graduated degree from
the China University of Mining and Technology, in
2004 and the PhD degree. He is currently a pro-
fessor with the Capital Normal University. His
research interests cover formal verification, robot,
and the embedded system with high reliability.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1128 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 08,2020 at 07:05:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

