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Abstract
Software obfuscation techniques can prevent binary diffing
techniques from locating vulnerable code by obfuscating
the third-party code, to achieve the purpose of protecting
embedded device software. With the rapid development of
binary diffing techniques, they can achieve more and more
accurate function matching and identification by extract-
ing the features within the function. This makes existing
software obfuscation techniques, which mainly focus on the
intra-procedural code obfuscation, no longer effective.

In this paper, we propose a new inter-procedural code ob-
fuscation mechanism Khaos, which moves the code across
functions to obfuscate the function by using compilation
optimizations. Two obfuscation primitives are proposed to
separate and aggregate the function, which are called fis-
sion and fusion respectively. A prototype of Khaos is im-
plemented based on the LLVM compiler and evaluated on a
large number of real-world programs including SPEC CPU
2006 & 2017, CoreUtils, JavaScript engines, etc. Experimental
results show that Khaos outperforms existing code obfus-
cations and can significantly reduce the accuracy rates of
five state-of-the-art binary diffing techniques (less than 19%)
with lower runtime overhead (less than 7%).

CCS Concepts: • Security and privacy→ Software and
application security.
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1 Introduction
Embedded devices have been widespread in many fields of
modern life, such as wearables, traffic lights, and autonomous
driving vision sensors and the total number are expected to
reach 30 billion by 2025 [47]. In recent years, the number of
vulnerabilities disclosed in embedded device software has
been on the rise, and attacks targeting embedded devices
have increased more than fivefold in the past four years [35].
Once a vulnerability in an embedded device is exploited, it
can lead to the collapse of the backbone network [4], while
vulnerabilities in medical devices such as pacemakers are
life-threatening [8, 38].
In addition to directly writing flawed code to introduce

vulnerabilities, the reuse of vulnerable third-party code is
another important reason for the widespread existence of
vulnerabilities in embedded devices. For example, Cui et
al. [11] found that 80.4% of LaserJet printers used third-party
libraries with known vulnerabilities. However, vulnerabil-
ities in these embedded devices cannot be patched in time
due to the fragment issues — similar code exists in multi-
ple versions of various products due to the fast replacement
of embedded devices [56]. For example, the QualPwn vul-
nerability [49] in the Qualcomm’s WiFi controller, which
is equipped in millions of Android phones, took nearly 6
months from the vulnerability disclose to the patch released
by the Qualcomm, and OEMs took longer to patch all devices
across all versions.

Unfortunately, the above problem favors attackers inwhich
they could detect existing vulnerabilities instead of explor-
ing 0-day vulnerabilities laboriously. Since most embedded

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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device software is not open source, attackers usually uti-
lize the binary diffing techniques [3, 7, 12, 13, 16, 17, 19–
26, 33, 36, 52, 53, 55, 59, 60, 62] to locate the vulnerable
code reused in the binary by comparing the binary with the
third-party code. With the introduction of machine learn-
ing, binary differing techniques have made great progress
in recent years. This greatly facilitates attackers locating
existing vulnerabilities in binaries. For example, David et
al. [13] searched for common vulnerabilities in mobile de-
vices, wearable devices, and medical devices, and were able
to locate 373 existing vulnerabilities.

Software obfuscation techniques [5, 9, 27, 54, 57] can trans-
form the program code to change the characteristics of the
binary code. They could be used against binary diffing tech-
niques, preventing attackers from locating existing vulner-
abilities and thus protecting software. Recent researches
have shown that software obfuscation techniques are no
longer effective against the state-of-the-art binary diffing
techniques [16, 33, 36, 55]. The main reason is that most soft-
ware obfuscation techniques focus on the intra-procedural
code obfuscation, which does not fundamentally change the
semantics of functions, while binary diffing techniques can
more and more accurately extract features within functions
to obtain their semantics.
Based on the above observations, we argue that inter-

procedural code obfuscation should be emphasized due to
their ability to change function semantics at the binary level.
To this end, we propose an inter-procedural code obfuscation
technique, Khaos, which moves the code across functions
and utilizes the compiler’s optimizations to transform (obfus-
cate) the code. The core idea of Khaos is that once the code is
restructured among functions, the generated binary code after
compilation optimizations can be very different. To achieve
the inter-procedural code obfuscation, Khaos changes func-
tion code across functions by separating a function into
sub-functions and aggregating functions into one.

It is non-trivial that transform arbitrary functions inKhaos
due to the challenges posed by performance, correctness, and
obfuscation effect. For example, 1) To balance the obfusca-
tion effect with the performance overhead, choosing which
code blocks within a function (or functions) to be separated
(or aggregated) is a problem; 2) Rebuilding all control flow
and data flow among functions after transformations (espe-
cially the indirect function calls handling in the fusion) is
difficult; 3) Aggregating functions deeply without affecting
the functionality of each function is a problem.
To address these challenges, two obfuscation primitives

are proposed in Khaos— the fission primitive and the fu-
sion primitive. The fission is used to separate a function into
sub-functions, and the fusion is used to aggregate several
functions into one. The fission and the fusion are two com-
plementary primitives, in which the fission tries to obfuscate
the function by itself and the fusion tries to obfuscate the

function by other functions. Furthermore, these two primi-
tives can also be used together to improve the obfuscation
effect, that is, the sub-functions separated by the fission can
be aggregated with other functions again.

The fission partitions the code region to a sub-function on
the control flow of the function with the dominator tree as
the granularity, and also combines the static cold/hot code
analysis technique to achieve lower performance overhead.
Since the define-use relationships of variables are changed
from within a function to cross functions, the fission needs
to rebuild the data flow by passing parameters. To minimize
the performance degradation caused by parameters passing,
we also propose a data-flow reduction mechanism to reduce
the number of parameters of the sub-functions. The control
flow (including the exception control flow) is also rebuilt
by inserting the function calls that call to sub-functions and
encoding the return values in the sub-function.
The fusion selects two functions with compatible return

values and no variadic parameters for the aggregation. Com-
patible means converting between different data types with-
out losing precision. The parameter list of the post-aggregation
function is merged from these two functions. To avoid the
inefficient way of passing parameters through the stack,
we propose a parameter list compression mechanism to re-
duce the number of the parameters. To rebuild the control
flow completely, we propose a tagged pointer mechanism,
which attaches control bits on function pointers to decide
the executed code when the aggregated functions are called
indirectly. We also propose a trampoline mechanism to han-
dle the function calls across modules. To further improve
the obfuscation effect, the deep fusion method is proposed
to aggregate innocuous basic blocks, whose execution does
not affect the global memory state, from different functions
together within the aggregated function.

Khaos was implemented based on the LLVM framework.
The experimental evaluations were conducted on the Lin-
ux/X86_64 platform by using SPEC CPU 2006 & 2017 C/C++
programs, CoreUtils, and 5 common embedded device soft-
ware containing vulnerabilities. Five state-of-the-art binary
diffing tools [16, 17, 22, 34, 62] were used to evaluate the
effectiveness of Khaos. The results show that Khaos is not
only effective but also efficient: the effectiveness experiments
show that the accuracy of these binary diffing was reduced
to be less than 19%, and the ranking of the vulnerable func-
tions decreased significantly; the performance experiments
show that Khaos incurs less than 7% overhead on average.
In summary, our contributions are as follows:
• A novel inter-procedural code obfuscation mecha-
nism. We point out that the inter-procedural code obfus-
cation is necessary against the binary diffing techniques,
and propose a new obfuscationmechanism,Khaos, which
could obfuscate the code across functions.

56



Khaos: The Impact of Inter-procedural Code Obfuscation on Binary Diffing Techniques CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

• The fission and the fusion primitives. We propose
two obfuscation primitives in Khaos to move the code
across functions. The fission separates a function into
multiple functions, and the fusion aggregates multiple
functions into one.
• New insights from implementation and evaluation.
We implement and evaluate a prototype ofKhaos, and the
results show that it outperforms the existing obfuscators
against the state-of-the-art binary diffing techniques. Our
study suggests that binary diffing techniques should focus
more on extracting the inter-procedural code features.

2 Background and Motivation
2.1 Binary Diffing
Binary diffing is a technique for visualizing and identify-
ing differences between two binaries. It can quantitatively
measure the differences between binaries and give matching
result at predefined granularity (e.g., function). It has been
widely used in software vulnerability search, security patch
analysis, malware detection, code clone detection, etc.
The workflow of binary diffing can be divided into two

stages, i.e., the offline features extraction and the online
code search. On the offline stage, tools extract features from
binaries, while what features should be extracted is the focus
of recent research; On the online stage, tools calculate the
similarity of the given binaries by using extracted features.
For example, BinDiff [62] extracts the number of basic blocks,
control flow edges, and function calls within a function as
the function’s identity. Then, it combines the control flow
graph matching algorithm to search for similar functions.

2.2 Software Obfuscation
Software obfuscation transforms the programwithout chang-
ing its functionality to make it hard to be analyzed. It can
be used to hide vulnerabilities, protect intellectual property,
etc. Actually, there is an arm race between software obfusca-
tion and binary diffing. Software obfuscation does not want
binary diffing techniques to match un-obfuscated with ob-
fuscated code successfully, and vice versa. In recent decades,
there are various techniques proposed in software obfusca-
tion, and they can be classified into data obfuscation, static
code rewriting, and dynamic code rewriting [45].

Data obfuscation techniques [10] transform the format of
data to prevent it from direct matching. Since most binary
diffing techniques utilize the features of the code, obfuscating
data is less effective against binary diffing.
Various dynamic code rewriting approaches follow the

concept of packing [39, 44], which hides code by encoding or
encrypting it as data. But, the packing techniques are easy to
be automatically unpacked [1, 41] or bememory-dumped [15,
18, 46, 51], which would lose the effect of obfuscation. Code
virtualization is another popular obfuscation technique [28].
It translates code into specific interpret representations (IRs)

instead of the native instructions and then uses an engine to
interpret the IRs at runtime. This technique sacrifices much
performance (10x slowdown at least [29]) in exchange for
a more powerful obfuscation. Therefore, the dynamic code
rewriting technique is not suitable for fighting against binary
diffing due to less effectiveness or too much overhead.

In contrast, static code rewriting is a promising technique
against binary diffing. It modifies program code during ob-
fuscation without further runtime modifications, which is
similar to compiler optimization. Researchers have proposed
many techniques for static code rewriting. For ease of intro-
duction, we categorize them by obfuscation granularity:
Instruction level: Instruction substitution [9, 27] replaces
the original instruction with equivalent instruction(s), such
as replacing an “add” instruction with two “sub” instructions.
O-LLVM [27] designed 10 different substitution strategies
for arithmetic and logical operations. To increase the com-
plexity of conditional branch instructions, opaque predicate
techniques [9, 27, 37, 50, 57] were proposed. They add per-
manent true or false (e.g., 𝑥2 != -1) conditions that do not
affect the original control flow, which are frequently used
against analytical techniques such as symbolic execution.
Basic block level: Bogus control flow [9, 27, 40] inserts dead
code into the original control flow and often utilizes opaque
predicates to prevent these codes from being optimized away
and executed, thereby ensuring the program’s functionality.
Function level: Control flow flattening [9, 27] converts the
control flow of the function into the “switch-case” form,
which is hard to be analyzed, and maintains the original
jump relationship by controlling the values of the cases. To
prevent being degraded back to the original control flow, the
“case” relationship is also obfuscated (encrypted).

2.3 Motivation
As binary diffing techniques continue to advance, many static
code rewriting techniques (referred to as code obfuscation
in the rest of the paper) with the intra-procedural gran-
ularity (i.e., instruction, basic block, and function) are no
longer effective [16, 33, 36, 55]. The main reason is that intra-
procedure code obfuscations do not fundamentally change
the semantics of each function, while most binary diffing
techniques are increasingly capable of extracting features
within functions to understand their semantics.

Therefore, we argue that inter-procedural code obfuscations
should be emphasized due to their ability to change function
semantics at the binary level which is the key to defeating
binary diffing techniques: 1) For the binary diffing works that
only consider the intra-procedural information, the inter-
procedural code obfuscation can fundamentally defeat them
because the code structures along with the semantics are
significantly changed; 2) For the binary diffing works that
take inter-procedure information into account, the inter-
procedural code obfuscation can also defeat them because
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the inter-procedural information extracted, such as the types
of function calls, the numbers of function calls, and the call
graph, are also significantly changed after the obfuscation.
Our thinking is also hinted by the literature published

from both the offensive and defensive sides: 1) most of binary
diffing works have discussed the issues of function inline [3,
6, 7, 12, 14, 16, 19–21, 23–26, 33, 58], and many of them [3,
13, 14, 19–21, 24–26, 58] admitted that it would affect the
accuracy of diffing; 2) Ren et al. [43] found the function inline
could reduce the binary similarity by approximately 10%.

3 Our Solution: Khaos
3.1 Overview
To achieve the inter-procedural code obfuscation, Khaos
changes the amount of code within a function by moving
code across functions firstly and then utilizes the compiler’s
optimizations to transform (obfuscate) the code. The idea
behind it is that once the code is restructured among functions,
the generated binary code after compilation optimizations (es-
pecially intra-procedural optimizations) can be very different.

In detail, we propose two obfuscation primitives — the fis-
sion primitive and the fusion primitive. The fission primitive
separates a function into multiple sub-functions thus making
the function thinner. The fusion primitive aggregates func-
tions into one thus making the function fatter. These two
primitives can also be used together to make more in-depth
changes to the function, that is, the separated sub-functions
can be aggregated with other functions.
For the convenience of discussion, we denote a function

before the transformation as an oriFunc (short for original
function), and denote the new function formed after the
fusion as the fusFunc (short for fused function). The new
function formed by the separated code during the fission is
denoted as the sepFunc (short for separated function), and
the function formed by the remaining code is denoted as the
remFunc (short for remnant function).
Fig. 1 gives an example about how the fission and the

fusion are performed on a function named cal_file(). The
function is used to find the number of a special character
in a given file. It first checks the file name and open the file
(lines 4-7), then reads the content and counts the amount
(lines 9-11). We can see that the fission separates two basic
blocks ( 2○ 3○) to sepFunc-1, and four basic blocks ( 5○- 8○) to
sepFunc-2, respectively. To maintain the correctness, the fis-
sion inserts three trampoline basic blocks in the remFunc-1
( a○ b○ c○) to create the call relationship of two sepFuncs. Basic
block ( d○) is used to return different value of sepFunc-1 (de-
tailed in §3.2). On top of the fission, the fusion aggregates the
log() function and the sepFunc-2 into a fusFunc-1. The
entry basic block ( e○) will be inserted into the fusFunc-1 to
select the aggregated code blocks.

Changing functions by recombining basic blocks from
different functions is not trivial, and it still faces several chal-
lenges from performance, correctness, and obfuscation.
• Challenge-1: Choosing which basic blocks (or functions)
to be separated (or aggregated) will seriously affect the
performance overhead and obfuscation effect, and how
to balance them well is difficult. For example, separating
each basic block as a sepFunc would favor the obfuscation,
but brings unacceptable overhead.
• Challenge-2: How to completely rebuild all control flow
and data flow among functions after transformation (es-
pecially the fusion) is difficult. For example, once several
functions participate in the fusion, we need to handle all
pointers of the oriFuncs so that it can correctly jump to
the fusFunc when de-referenced.
• Challenge-3: Simply merging functions makes they be-
come each other’s junk code and has a limited obfuscation
effect because the compiler will still optimize the code for
different functions separately. Binding control flows and
data flows belonging to different functions in the fusFunc
can prevent that but is also challenging to avoid changing
the functionality of the function.
In the following subsections, we will detail the fission and

the fusion design, and how we address the above challenges.

3.2 The Fission Primitive
The fission first identifies the regions (each region is a basic
block set) that need to be separated, then composes these
regions into sepFuncs, and finally rebuilds the control flow
and the data flow among sepFuncs and remFunc.

3.2.1 Partitioning Regions to Form SepFunc. In gen-
eral, a function’s property is single entry and multiple exits.
Hence, as long as a certain code region satisfies this prop-
erty, it can be separated to become a new function. More
precisely, as long as a code region is a dominator tree [2] on
the control flow graph, it can be extracted into a sepFunc. The
fission creates call relationship among sepFuncs and remFunc
to ensure correctness. If the fission generates too many sep-
Funcs, the newly created function calls in remFunc will bring
additional overhead (especially new function calls inside a
loop). However, if the number or size of the sepFuncs is small,
the oriFunc cannot be significantly changed. Therefore, de-
signing a reasonable region identify algorithm is the key to
reducing the overhead and improving the obfuscation effect.
The core idea. We abstract the code region partitioning
problem as a graph cutting problem. The function’s control
flow graph can be regarded as a directed graph, and the edge
weight represents the frequency of executionwhich indicates
the cold/hot information. Partitioning the code region can be
regarded as cutting the graph, where the weight of the cut
edge is the cost of performance and the obfuscation effect is
the number of the nodes in the sub-graph.
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int cal_file(char *file_name) {
int fd = -1, n = 0, value = 0;
char buffer[130];
if (file_name) {

log(file_name);
fd = open(file_name, …);
if(fd == -1) return -1;

} // other checks omitted
while (n = read(fd, buffer, 128))

value += cal(buffer, n);
close(fd);
return value;

} log
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Fig. 1. An example of obfuscating a function by using Khaos.

Algorithm 1 The region identifying algorithm
1: procedure Identify(𝑓 )⊲ The function’s representation
2: get dominator tree set 𝑆 of 𝑓
3: 𝑆 ← 𝑆 \ 𝑓 ⊲ We won’t separate the whole function
4: while 𝑆 is not empty do
5: 𝑡𝑎𝑟𝑔𝑒𝑡 ← null
6: for dominator tree t in 𝑆 do
7: 𝑒 𝑓 𝑓 𝑒𝑐𝑡 ← basic block count of 𝑡
8: 𝑐𝑜𝑠𝑡 ← frequency of 𝑡 ’s head
9: if 𝑡 is in loop then
10: 𝑙 ← the innermost loopwhere 𝑡 is located
11: 𝑐𝑜𝑠𝑡 ← loop count of 𝑙 × 𝑐𝑜𝑠𝑡
12: end if
13: 𝑣𝑎𝑙𝑢𝑒 ← 𝑒 𝑓 𝑓 𝑒𝑐𝑡 ÷ 𝑐𝑜𝑠𝑡
14: if 𝑣𝑎𝑙𝑢𝑒 > 𝑡𝑎𝑟𝑔𝑒𝑡 ’s value then
15: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡 ⊲ Update the chosen tree
16: end if
17: end for
18: if 𝑡𝑎𝑟𝑔𝑒𝑡 ≠ 𝑛𝑢𝑙𝑙 then
19: delete trees from 𝑆 that intersect with 𝑡𝑎𝑟𝑔𝑒𝑡
20: end if
21: end while
22: return
23: end procedure

The region identifying algorithm. Based on the above
idea, we design the region identifying algorithm (algorithm
1) on top of the directed weighted graph cut algorithm [48] to
balance the performance overhead and the obfuscation effect.
The algorithm takes function code as input and performs
dominator tree analysis [31] (line 2) at first. To avoid sepa-
rating the whole function body into a sepFunc, we remove
the dominator tree of function itself (line 3) and identify the
regions from the rest of the trees. To indicate the effect of the
fission on obfuscation, we use the number of basic blocks in
the tree to represent it (line 7). To indicate the effect of the
fission on performance, we use the execution frequency of
the root node of the dominator tree by using block frequency
analysis [32] (line 8) and the loop count (if the region is in

a loop, the call to sepFunc will increase) as the cost of the
cut (lines 8-12). We iteratively select the most cost-effective
(i.e., maximum the ratio of effect and cost) dominator tree to
separate until the tree set is empty (lines 13-16).

3.2.2 Data-Flow Rebuild. In addition to identifying re-
gions as the function bodies of sepFuncs, we also need to
identify the inputs and the outputs of these regions to con-
struct the parameters and return value of sepFuncs. For each
variable used in a region, it should be an input if its point is
outside the region; Similarly, for each variable defined in a
region, it should be an output if it has a use point outside
the region. For example, as shown in Fig. 2, the fd and n
variables are inputs because the defined points are outside
the region, and the value variable has a use point outside the
region, so it is an output. For the variables whose define-use
relationship are across regions, we use the function param-
eters to pass the pointer to them. We don’t pass a region’s
output variables by using the return value of sepFunc because
a region may have multiple output variables.
Data-flow reduction. In general, the local variables of a
function are defined at the entry basic block. Therefore, if an
identified region needs to use local variables, these variables
need to be passed into the sepFunc through parameters. In
fact, if some local variables are only used by a sepFunc, then
these variables do not need to be passed into the sepFunc,
they can be defined directly in the sepFunc. This can shorten
the length of the sepFunc parameter list, save unnecessary
variable transmission, and further improve performance. To
achieve this, we propose a lazy allocation strategy — if a local
variable is only used in the region, we will move the variable
definition to the sepFunc. For example, the n variable in Fig. 2
is initially defined in the oriFunc but redefined and only used
in the region-2, which becomes sepFunc-2 function, so
the definition point of the variable can be delayed in the
sepFunc-2 function.

3.2.3 Control-Flow Rebuild. We extract the basic blocks
of each identified region into a sepFunc. The jump relation-
ship between the regions in the oriFunc is transformed into
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Fig. 2. The control-flow and data-flow graphs of cal_file() in Fig. 1

the function call-return relationship after fission. The cre-
ation of a function call is simple, we only need to insert the
function call at the location of the entry basic block of the
region before extraction and set the parameters that need to
be passed into the sepFunc.
The handling of function returns is relatively complex

due to: If a region has multiple exits, the corresponding
sepFunc needs to encode this information into the return
value, so that the remFunc can use this information to select
the corresponding code to execute. As Fig. 2 shows, for the
two exits (0 and 1) in region-1, when sepFunc-1 returns
from exit 0, the control flow should go to BB5, and when
returns from exit 1, it should go to BB9.

We use the return value of sepFunc to indicate the remFunc
to determine the execution direction: We first number each
exit of the sepFunc, uses the number as its return value, and
then insert a basic block at the call-site of this sepFunc in the
remFunc (e.g., a○ in Fig. 1) to transfer control flow based on
the return value.

3.2.4 Handling the Exception Control-Flows. During
program execution, there are some exception control flows
that deviate from the usual function call and return, including
the setjmp/longjmp and the C++ exception handling (EH
in short). The fission requires special handles of them.
Handling the setjmp/longjmp. Programmers could use
the setjmp() in a function to record the current context into
a jmpbuf structure. And then, they could use the longjmp()
in any subroutines on the call chain of this function to go
back to place the jmpbuf is pointing to, i.e., the call-site of
the setjmp(). There is a requirement here that the setjmp()
and the longjmp() using the same jmpbuf must be in the
same call chain. Therefore, the call-site of the setjmp() can-
not be separated into any sepFunc, because the stack frame of
the function that calling the setjmp() cannot be freed when
the corresponding longjmp() is executed. Otherwise, the
longjmp() will direct control flow to an unknown location.
Handling the C++ exception. The EH mechanism is a fea-
ture of the C++ that developers can capture exceptions in the

try block by writing the catch statements. Since the fission
moves part of the code into a sepFunc, the try-catch pair
may be broken, making EH information inconsistent. Simply
skipping the exception-relevant function would reduce the
obfuscation effect. Therefore, when identifying the code re-
gion, if it contains any code that may generate an exception,
we will locate the corresponding catch code and divide it
into the same region.

3.3 The Fusion Primitive
The fusion selects functions to form fusFunc, and rebuilds
the control and the data flow to ensure the correctness. In
theory, the fusion can aggregate any number of functions. To
balance the performance overhead and the obfuscation effect,
we choose to aggregate two functions to form a fusFunc.

3.3.1 Selecting Functions to Form FusFunc. The fusion
cannot arbitrarily select functions, it needs to select functions
with compatible types of the return values. The definition
of incompatibility is that if converting between two types
loses precision, the two types are incompatible. For example,
when the return value of one function is an integer and the
other is a float, these two functions cannot be aggregated.

In fact, there are other conditions that limit the selection of
functions: 1) The variadic functions, e.g., the printf(...); 2)
Two functions with incompatible types of the return values;
3) Two functions that have a direct calling relationship. The
first two constraints are designed for correctness, and the
last is designed for performance to avoid generating a lot of
recursive fusFuncs. Functions that meet the above constraints
will be randomly aggregated in pairs.

3.3.2 Data-Flow Rebuild. Once the two functions to be
aggregated are determined, the function prototype of the cor-
responding fusFunc can be determined immediately. For ex-
ample, as shown in Fig. 3 (a) and (b), the bar() and the foo()
are aggregated into int bar_foo_fusion(). The ctrl pa-
rameter is used to select the function bodies aggregated from
the bar() and the foo(). Determining the function proto-
type of fusFunc is crucial to the rebuild of the data flow,
which involves setting the parameter list and return value.
Parameter list compression. Simply merging the param-
eter lists of the two functions makes the parameter list of
fusFunc too long, which will degrade the performance of
calling fusFunc. This is because in the X86_64 calling conven-
tion, the first six parameters are passed in registers, and the
rest of the parameters are passed on the stack, which is an
inefficient way. To achieve efficient parameter passing, we
propose a parameter list compression mechanism — if the
types of the two parameters from the two functions are com-
patible, we compress them into one. The reason why we can
do this is that when a fusFunc is called, only the parameter
list of one of the functions participating in the aggregation
is used. For example, as Fig. 3(c) shows, both the bar() and
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void bar(short a, float b) {
// bar's code
printf("bar: %d, %f\n", a, b);

}
int foo(int m) {

// foo's code
printf("foo: %d\n", m);
return m;

}
int main() {

bar(0x1234, 0.1);
int res = foo(1);
...

}
(a) Before fusion (b) Fusion w/o parameter compression (c) Fusion w/ parameter compression

int bar_foo_fusion(int ctrl, short a, float b, int m) {
if (ctrl) { // bar's code

printf("bar: %d, %f\n", a, b);
return 0;

} else { // foo's code
printf("foo: %d\n", m);
return m; }

}
int main() {

// ctrl is 1, executing bar
bar_foo_fusion(1, 0x1234, 0.1, 0);
// ctrl is 0, executing foo
int res = bar_foo_fusion(0, 0, 0.0, 1);

}

int bar_foo_fusion(int ctrl, int x, float b) {
if (ctrl) { // bar's code

printf("bar: %d, %f\n", (short)x, b);
return 0;

} else { // foo's code
printf("foo: %d\n", x);
return x; }

}
int main() {

// ctrl is 1, executing bar
bar_foo_fusion(1, 0x1234, 0.1);
// ctrl is 0, executing foo
int res = bar_foo_fusion(0, 1, 0.0);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 3. An example of performing the fusion on two functions.

the foo() have an integer parameter (short a and int m),
we compress them into one integer parameter (int x).

If a parameter can not participate in the compression, it
is copied into the parameter list of the fusFunc. The number
of parameters after the fusion will increase. In the worst
case, it is the sum of the parameters of the two functions,
which means none of the parameters can be compressed. To
avoid using the stack to pass parameters as much as possible,
we preferentially select functions with the total number of
parameters less than six for the fusion.
Return value determination. Determining the return type
of fusFunc is relatively simple: 1) If the return type of one
function is void, then the return type of the fusFunc is the
return type of another; 2) If the return types of the two
functions are both not void, the compressed type is used
as the return type of the fusFunc, which is similar to the
parameter list compression mechanism.

3.3.3 Control-Flow Rebuild. Once the fusFunc is created,
the two involved oriFuncs need to be removed, and all call-
sites to the oriFuncs need to be replaced to call the fusFunc.
As mentioned before, a ctrl parameter will be added into
the parameter list of the fusFunc to select the code block
aggregated from the oriFuncs. The value of this parameter is
0 or 1, which is set according to the original call-site of the
oriFunc. Since the fusFunc parameter list includes the param-
eters of both oriFuncs, we only need to pass the parameters
required by the oriFunc to the fusFunc at the call-site of this
oriFunc. Unused parameters are set to be 0.
Handling Indirect function calls. Indirect function calls
are more difficult to handle than direct function calls because
we do not know where the oriFunc will be called. Fig. 4 (a)
shows an example that calls two functions by de-referencing
the function pointer. The corresponding data flow is given
in Fig. 4 (b). When aggregating the bar() and the foo(), we
need to change the function pointer points to the fusFunc
and then replace the function call to call this fusFunc. But,
we encounter a problem that we do not know what the value
of the ctrl parameter should be set to. This is because at the

int bar() {
// bar's code

}
int foo() {

// foo's code
}
int (*fptr)();
int main(int argc) {

if (...)
fptr = &bar;

else
fptr = &foo;

int res = fptr();
...

}

int (*fptr)()

int res = fptr()

fptr = (&bar_foo) | tag

value tag

if (extract_tag(fptr))

res = tmp

fptr = &barfptr = &foo

tmp = fptr()val = clear_tag(fptr)
tmp = val(extract_tag())

(a) (b) (c)

Fig. 4. Function reference and indirect call processing.

compile time, we don’t know whether the original function
pointer fptr points to the bar() or the foo().

To address the above problem, we propose a tagged pointer
mechanism, which is similar to the low-fat pointer [30]. The
core idea is to encode the information (called tag) of which
oriFunc pointed to by the original function pointer into the
new function pointer, and when the new function pointer is
de-referenced to make a call, the value of the ctrl parameter
can be dynamically determined by parsing the new function
pointer. In detail, when the operation of taking the address of
the function participating in the aggregation occurs, we need
to perform the encoding operation. Since the tag is encoded
into the function pointer, it can be propagated along with the
function pointer. When the function pointer is de-referenced
to make a call, we will extract the tag in the pointer as the
and set the ctrl parameter according to the tag.
The tag requires two extra bits, where a bit indicates

whether the pointer points to a fusFunc, and the other bit
records the value of the ctrl parameter. For example, as
shown in Fig. 4 (c), if the pointer fptr points to the bar(),
the value of the tag will be set to 11b. When the pointer
fptr is dereferenced to make a call, we insert code to first
check whether the tag is empty. If not, the code will ex-
tract the ctrl parameter and call the fusFunc. Otherwise, no
additional operations are required.

We choose the 2nd bit and the 3rd bit of function pointers
to place the tag. This is because the functions are usually
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Current = tmp1; 
oldtr = tmp2;
return;

delta = tr - oldtr;
if (delta < -10) delta += 256;
tmp1 = Current + delta * 1000;
tmp2 = tr;

Update(int tr)
int delta;
static int oldtr = -1;
int tmp1 = 0, tmp2 = 0;

tmp1 = 0; 
tmp2 = 0;oldtr == -1?

1

2

3

4

5

UMV(int y, int x, int height, int width)
int width4 = ((width+2*4-1)<<2);
int height4 = ((height+2*4-1)<<2);
x = x + IMG_PAD_SIZE*4;
y = y + IMG_PAD_SIZE*4;

7

6

Fusion(ctrl,…)

7

1

2 8

4

5

0

control flow

basic block

function

basic blocks

Fig. 5. A real-world example of the deep fusion method.

16-bytes aligned with the performance consideration, so the
lowest 4 bits of the function pointer can be used.
Handling function calls across modules. There are two
cases of cross-module function calls, one is the function
pointer of a module is propagated to other modules, and
the other is a module directly calls functions exported by
other modules. If any case happens on a fusFunc, we needs
to process all involved modules to ensure the fusFunc can be
called correctly. But in some cases, we can not process all
the modules (e.g., some libraries may have no source code).

To address this problem, we propose a trampoline mecha-
nism so that all modules do not need to be processed. In detail,
we transverse the data flow conservatively and identify all
function pointers that may propagate outside the module.
And then, we modify these function pointers to point to a
piece of trampoline code instead of the fusFunc. So that when
the external module calls these function pointers, the con-
trol flow will transfer to the trampoline code first, and the
trampoline code will help the function outside the module to
reorganize the function parameters and call the fusFunc. For
the exported oriFuncs, the method is similar to the replacing
the oriFunc’s function body with the trampoline code.

3.3.4 The Deep Fusion. To further improve the obfusca-
tion effect, we propose a deep fusion method to aggregate
as many basic blocks as possible between the two parts of
the code during the fusion process.
We have observed that some basic blocks can be executed

many times without affecting the normal function. The char-
acteristic of these basic blocks is that their execution does
not affect the global memory state, and they are called the in-
nocuous basic block in this paper. The concept is very similar
to the reentrant function [42] that it can be re-executed with-
out affecting the functionality of the program. For innocuous
basic blocks from different oriFuncs, they can be aggregated
together within the fusFunc. The innocuous analysis of each
basic block is conservative. For example, 1) if a memory write
operation in a basic block cannot be determined whether
the modified data is local or global, then this basic block is
not innocuous; 2) if there is a function call to an external
function in a basic block, this basic block is not innocuous.

We give a simplified example of 464.h264ref in SPEC
CPU 2006 benchmark. As shown in Fig. 5, the Update() and
UMV() are aggregated into the Fusion(). The basic block
(BB) 3○ of the Update() firstly redefines the local variable
delta, and then loads the value of global variable Current,
and writes two local variables tmp1 and tmp2 at last. Since
these operations do not affect the global memory state, the
BB 3○ is determined to be innocuous, and so as the BB 6○ of
UMV(), thus we aggregate them into one — the BB 8○.

This deep fusion method modifies the control flow graph
and data flow graph of the fusFunc at the same time, adding
data dependency and control dependency so that the fusFunc
cannot be simply separated back to the two functions.

3.4 Combining the Fission and the Fusion
The fission and the fusion can be used together to further
enhance the obfuscation effect.
• FuFi.sep: Only aggregating the sepFuncs generated by
the fission. In this case, the issue of handling indirect
function calls no longer exists;
• FuFi.ori: Only aggregating the oriFuncs that are not pro-
cessed by the fission, e.g., the functions with only one
basic block. This combination could balance the obfus-
cation effect and the performance overhead well, and is
suitable for software in most real-world scenarios;
• FuFi.all: Aggregating the fission-generated sepFuncs and
the fission-unprocessed oriFuncs uniformly and randomly.
In this combination, the obfuscation effect is prioritized,
followed by the performance overhead. It is suitable for
programs that require a high obfuscation effect.

4 Evaluation
We implemented Khaos based on the LLVM-9.0.1. The fis-
sion and the fusion are implemented as the middle-end
passes, and the fission pass is scheduled before the fusion
pass. We run Khaos on Ubuntu 20.04 (Kernel v5.4.0) that
runs on an Intel(R) Xeon(R) Gold 5218 CPU with 128G mem-
ory. This section evaluates Khaos in terms of effectiveness
and performance, and answers the following questions:
• (Q1) How is the performance of the obfuscated programs?
• (Q2) How does Khaos work against the state-of-the-art
binary diffing techniques?
• (Q3) How good is Khaos at hiding real vulnerable code?

Test Suites. We used three test suites to evaluate Khaos: 1)
All C/C++ programs in SPEC CPU 2006/2017 benchmarks
with the ref input (denoted as the T-I); 2) All 108 programs
in the CoreUtils 8.32 (denoted as the T-II); 3) Five commonly
used programs in embedded devices with at least one vul-
nerability, including two popular IoT JavaScript engines (Jer-
ryScript and QuickJS), OpenSSL-1.1.1, BusyBox-1.33.1 and
libcurl-7.34.0 (denoted as the T-III). The performance eval-
uation was performed on the T-I (Q1); The effectiveness
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Fig. 6. Runtime overhead of SPEC CPU 2006 (upper part) and 2017 (lower part) C/C++ programs.

against binary diffing techniques was evaluated on the T-I
and the T-II (Q2); The ability to hide vulnerable code was
evaluated on the T-III (Q3). Since software developers typi-
cally link programs into a single binary in embedded devices,
we compiled and obfuscated these test suites in the same
way under O2 with the link-time optimization (LTO).
Comparison targets. To compare with existing obfusca-
tor, we choose the popular compiler-level obfuscation tool
O-LLVM [27] as our comparison target because it is open-
sourced and compiler-based (same as Khaos). O-LLVM [27]
contains three obfuscation methods: instruction substitu-
tion (Sub), bogus control flow (Bog), and control flow flatten-
ing (Fla). Literatures [5, 16, 43, 55] in software engineering,
systems security, and programming languages fields all use
it in their experiments. To ensure the consistency of the
evaluation environment, we upgrade the LLVM version of O-
LLVM [27] to 9.0.1, which is same as Khaos. We also choose
BinTuner [43], which is an iterative compiler tool that uses
compiler options to transform the code to enlarge the differ-
ence of binaries, as another target to compare Khaos with
compiler’s options.
Confrontation targets. We use five state-of-the-art binary
diffing techniques, i.e., Google BinDiff [62], VulSeeker [22],
Asm2Vec [16], SAFE [34], DeepBinDiff [17], to evaluate the
effectiveness of Khaos. Among them, Google BinDiff is an
industry-standard binary diffing tool. Asm2Vec, SAFE, Deep-
BinDiff, and VulSeeker are the state-of-the-art methods for
learning the semantic similarity in different granularity (e.g.,
function, basic block, control flow graph, call graph).

4.1 Performance Overhead After Obfuscation
We separately evaluated the performance overhead of the
fission and the fusion, and the three combination modes
introduced in §3.4 on the T-I. As shown in Fig. 6, the geo-
metric performance overhead of the fission and the fusion
are 5% and 6%, respectively. The reason why some cases
(e.g., 456.hmmer) have a negative performance overhead is

that after the fission separates part of the code, the remFunc
can be further inlined to its callers, and the fusion improves
the code locality of the aggregated functions. The results
demonstrated that obfuscations compliant with the compiler
optimizations can have good performance advantages.
Compared with the FuFi.ori, the other two combinations

have a higher overhead because the fission generates many
sepFuncs, aggregating them all incurs non-negligible per-
formance overhead. For example, the 502.gcc_r contains
many recursive functions, the sepFuncs generated by these
functions are aggregated to the fusFuncs which are also the
recursive functions. Since the stack frames of fusFuncs are
larger, they will bring much pressure to the stack.
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Fig. 7. Runtime overhead of O-LLVM and Khaos.

Compared with O-LLVM[27] and compiler options.We
compared the performance overhead ofKhaoswith Sub, Bog,
Fla. As shown in Fig. 7,Khaos has comparable overheadwith
the Sub and the Bog. Due to the high overhead of Fla, we
reduce its obfuscation ratio to 10% (Fla-10), and others are all
at 100%. Due to the page limit, we put the compiler option
relevant evaluation in our long version of this paper, which
is available at http://arxiv.org/abs/2301.11586.

4.2 The Effectiveness Against Binary Diffing
Comparing binary diffing works is challenging due to their
measurements of similarity are very different [43], such as
graph edit distance or statistical significance. Simply com-
paring their similarity scores does not provide accurate infor-
mation. For the commercial binary diffing tool BinDiff [62],
we normalized its similarity score to [0, 1]. For other tools
open-sourced in academia, we normalized their results by

63

http://arxiv.org/abs/2301.11586


CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada P. Zhang, C. Wu, M. Peng, K. Zeng, D. Yu, Y. Lai, Y. Kang, W. Wang, and Z. Wang

0.0
0.2
0.4
0.6
0.8
1.0

BinDiff VulSeeker Asm2Vec Safe DeepBinDiff

pr
ec
is
io
n@

1

Sub Bog Fla-10 Fission
Fusion FuFi.sep FuFi.ori FuFi.all

Fig. 8. Precision@1 result of chosen binary diffing work.

computing the ratio of true matching function pairs that are
also the top-ranked matching candidates (i.e. Precision@1).
Paring success judgment method. Since Khaos changes
the number of functions, we relax the requirements for Pre-
cision@1. For the fission, if the oriFunc is paired with any
sepFuncs generated from it or the remFunc, this pairing is rec-
ognized as successful. For the fusion, if the fusFunc is paired
with any function before the fusion, this pairing is recog-
nized as successful. For the DeepBinDiff [17], since its result
is basic block to basic block, the pairing is recognized as
successful as long as their belonging functions are matched,
even if the two basic blocks are not truly matched. It is worth
noting that the above setting is looser than originally used
in these tools but is more challenging for Khaos.
Test suite adjustment adaptability.

The test suites for VulSeeker [22] and DeepBinDiff [17]
need to be adjusted due to unable to run results. VulSeeker [22]
takes more than 1 day to diff two large binaries and often
gets killed due to memory limit. To speed up VulSeeker, we
group the related functions into small groups (30 functions
per group) to manually reduce the searching space, which is
unfavorable to Khaos because the smaller the group size, the
easier to diff. DeepBinDiff [17] requires too much memory
(sometimes more than 10 TB) due to its representation of
basic blocks. Since its diffing process is tightly coupled with
binary size, we decide not to modify it and only use pro-
grams less than 40k lines. Even with the reduced test suite,
it is still time consuming (e.g., over 1 week to diff binaries of
508.namd_r). It’s worth mentioning that this is also unfavor-
able to Khaos because it uses original functions to obfuscate
each other, lacking material reduces the obfuscation effect.
Other binary diffing tools still use the normal test suites.
Results.We evaluated the accuracy of these tools by com-
paring obfuscated and un-obfuscated (un-stripped) binaries
on the T-I and T-II. As Fig. 8 shows, higher accuracy means
lower adversarial effect. Since BinDiff [62] takes the advan-
tage of function names, its result is much higher than others.
Although DeepBinDiff [17] uses the basic block level instead
of the function level as its granularity, the feature vector of
the basic block still encodes the control flow graph and call
graph, which have been changed by Khaos, and that’s why
Khaos can defeat it. With comparable overhead, Khaos can
achieve a much better adversarial effect than O-LLVM [27].

4.3 The Ability of Hiding Vulnerable Code
We use the T-III to further evaluate the ability of hiding real
world vulnerable code. Each program contains at least one
vulnerability. In this experiment, we only used VulSeeker [22],
Asm2Vec [16], and SAFE [34] to calculate the escape@n ratio
(the rank of truly matched pair in the matched result) of vul-
nerable functions. The reason why BinDiff and DeepBinDiff
were not used is that they only give top-1 matched result. We
calculated escape@1/10/50 ratio of vulnerable functions. For
example, as shown in Fig. 9, the escape@50 ratio of FuFi.all
on Asm2Vec is over 0.8, which means more than 80% of vul-
nerable functions can not be found within top-50 ranked
functions. Moreover, this time we set the obfuscation ratio
of Fla in O-LLVM to 100%, which would bring unacceptable
overhead in the real scenario.
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Fig. 9. Escape ratio for top@1/10/50 of vulnerable functions.
The escape ratio could reflect the ability of hiding the

vulnerable code with different obfuscations. With the same
precision and binary diffing tool (e.g., escape@50- Asm2Vec),
the FuFi.sep and the FuFi.all are better than the FuFi.ori, and
all of them are better than the Sub, the Bog, and the Fla in
O-LLVM. This ratio could also reflect the diffing ability of
binary diffing tools. With the same precision and the settings
of obfuscators, e.g., escape@50-FuFi.all, Asm2Vec is more
accurate than Safe, and both of them outperform VulSeeker.
The experimental results show that Khaos can not only
fight against binary diffing tools, but also reduce the pairing
ranking of vulnerable functions significantly, achieving the
purpose of hiding vulnerable code.

5 Conclusion
Binary diffing techniques can be used for 1-day/n-day vul-
nerability searching by attacker. In this paper, we propose
an inter-procedural obfuscation technique Khaos to protect
software against the state-of-the-art binary diffing. We de-
sign two obfuscation primitives — the fission and the fusion.
Experimental results show that Khaos is not only effective,
but also efficient. We wish our study could not only help
developers to protect their software, but also promote the
development of binary diffing techniques in turn.
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Table 1. Vulnerable functions of Test Suite III

Program Function CVE
JerryScript opfunc_spread_arguments 2020-13991
QuickJS compute_stack_size_rec 2020-22876

BusyBox1.33.1 getvar_s 2021-42382
handle_special 2021-42384

OpenSSL 1.1.1 init_sig_algs 2021-3449
EC_GROUP_set_generator 2019-1547

libcurl 7.34.0

suboption 2021-22925,2021-22898
init_wc_data 2020-8285
conn_is_conn 2020-8231
tftp_connect 2019-5482,2019-5436
ftp_state_list 2018-1000120
alloc_addbyter 2016-8618

Curl_cookie_getlist 2016-8623

ConnectionExists 2016-8616,2016-0755,
2014-0138,2015-3143

Total 14 19

Data-Availability Statement
Wehave published the diffing files [61] used in our evaluation
process, along with the scripts to parse them, and the result
in the paper. These diffing files are generated by the 5 diffing
works mentioned in the §4.

A Artifact Appendix
A.1 Abstract
We provide all the diffing files in our artifact, along with
scripts to regenerate the data for the graphs in the paper.
Since SPEC CPU 2006 & 2017 are not open-sourced, we omit-
ted the files of the performance part.

A.2 Artifact Check-List (Meta-Information)
• Run-time environment: Ubuntu 20.04 or 22.04.
• Hardware: We use Intel(R) Xeon(R) Gold 5218 and 6148
CPU for performance experiment. A similar CPU should
give comparable results.
• Execution: Python scripts.
• Output: Performance overhead needs to be recalculated
manually. Diffing and CVE results are output in CSV files.
• How much disk space required?: 20GB.
• Publicly available?: Yes.
• Dataset: Our data sets include SPEC CPU 2006, SPEC
CPU 2017, and 5 programs in Table 1.
• How delivered: The diffing files, scripts, and results are
available at https://doi.org/10.5281/zenodo.7496594.

A.3 Experiment Workflow
A.3.1 Performance Part. We put all the performance re-
sults of our platform in the result/spec-result folder. The de-
tailed results are in the SPEC CPU 2006 sheet and SPEC CPU
2017 sheet of result/result.xlsx. The overhead sheet and the
overhead(2) sheet summarize the detailed result and com-
pared result, corresponding to Fig. 6 and Fig. 7, respectively.

A.3.2 Precision@1 Part. The diffing files of 5 diffing
works are in the diffing folder. The detail of precision@1
is in precision_1 sheet of result/result.xlsx. We provide a
collecting script to summarize the result. This script out-
puts the diffing result of every tool in separated CSV files
(e.g., result/asm2vec-precision-1.csv is corresponding to the
Asm2Vec part of precision_1 sheet in result.xlsx). The pre-
cision_1_simplified sheet (corresponding to the Fig. 8) in
result.xlsx is the simplified result of precision_1 sheet and can
be re-calculated by it.

$ cd scripts && ./parse_precision_1.sh

A.3.3 BinTuner Part. The diffing files of BinDiff for the
binary files generated by BinTuner is in the diffing/BinDif-
f/BinTuner folder. We provide a collecting script to summa-
rize the result. This script outputs the diffing result BinDiff in
a CSV files (result/bintuner.csv, corresponding to the bintuner
sheet in result.xlsx). The overall runtime is about 5 seconds.
The bintuner sheet is corresponding to the ??.

$ cd scripts && ./parse_bintuner.sh

A.3.4 CVE Part. The detail of CVE is in cves sheet of re-
sult/result.xlsx. We provide a collecting script to summarize
the result. This script outputs the CVE ranking result of every
tool in separated CSV files (e.g., result/asm2vec-cve.csv is cor-
responding to the Asm2Vec part of cves sheet in result.xlsx).
The cve sheet is a simplified version and is corresponding to
the Fig. 9.

$ cd scripts && ./parse_cve.sh

A.4 Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-

badging
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