
CodeExtract: Enhancing Binary Code Similarity
Detection with Code Extraction Techniques

Lichen Jia
SKLP, Institute of Computing Technology, CAS

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
lcjia457@gmail.com

Chenggang Wu
SKLP, Institute of Computing Technology, CAS

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
wucg@ict.ac.cn

Peihua Zhang
SKLP, Institute of Computing Technology, CAS

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
zhangpeihua@ict.ac.cn

Zhe Wang∗
SKLP, Institute of Computing Technology, CAS

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
wangzhe12@ict.ac.cn

Abstract
In the field of binary code similarity detection (BCSD), when
dealing with functions in binary form, the conventional ap-
proach is to identify a set of functions that are most similar to
the target function. These similar functions often originate
from the same source code but may differ due to variations in
compilation settings. Such analysis is crucial for applications
in the security domain, including vulnerability discovery,
malware detection, software plagiarism detection, and patch
analysis. Function inlining, an optimization technique em-
ployed by compilers, embeds the code of callee functions
directly into the caller function. Due to different compila-
tion options (such as O1 and O3) leading to varying levels
of function inlining, this results in significant discrepancies
between binary functions derived from the same source code
under different compilation settings, posing challenges to the
accuracy of state-of-the-art (SOTA) learning-based binary
code similarity detection (LB-BCSD) methods. In contrast to
function inlining, code extraction technology can identify
and separate duplicate code within a program, replacing it
with corresponding function calls. To overcome the impact
of function inlining, this paper introduces a novel approach,
CodeExtract. This method initially utilizes code extraction
techniques to transform code introduced by function inlin-
ing back into function calls. Subsequently, it actively inlines
∗Zhe Wang is the corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
LCTES ’24, June 24, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0616-5/24/06
https://doi.org/10.1145/3652032.3657572

functions that cannot undergo code extraction, effectively
eliminating the differences introduced by function inlining.
Experimental validation shows that CodeExtract enhances
the accuracy of LB-BCSD models by 20% in addressing the
challenges posed by function inlining.

CCS Concepts: • Security and privacy→ Software re-
verse engineering.

Keywords: Learning-based Binary Similarity Analysis, Func-
tion Inline, Program Analysis
ACM Reference Format:
Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang. 2024.
CodeExtract: Enhancing Binary Code Similarity Detection with
Code Extraction Techniques. In Proceedings of the 25th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’24), June 24, 2024, Copen-
hagen, Denmark. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3652032.3657572

1 Introduction
Binary code similarity detection [2, 4, 5, 15–18, 22, 28, 36, 38]
plays a crucial role in security-related applications, including
vulnerability discovery [9, 11, 19], malware detection [7, 8,
25, 26, 37, 59], software plagiarism detection [30, 31, 44, 48,
60, 61], and patch analysis[21, 34, 40, 51]. With the rapid
development of artificial intelligence technologies, LB-BCSD
methods have demonstrated superior ability in recognizing
the semantics of instructions, surpassing traditional BCSD
methods in both accuracy and detection speed [3, 29, 39].
LB-BCSD methods primarily calculates similarity at the

function level and is divided into two stages [20, 45]: 1) Func-
tion extraction, where code within binary programs is ex-
tracted into functions; 2) Similarity calculation, relying on
neural networks to transform functions into semantic vec-
tors, with the distance between these vectors representing
the similarity between different functions. Researchers [13,

https://orcid.org/0009-0006-4974-6446
https://orcid.org/0000-0003-1777-8110
https://orcid.org/0000-0001-9421-0380
https://orcid.org/0000-0003-4719-1804
https://doi.org/10.1145/3652032.3657572
https://doi.org/10.1145/3652032.3657572
https://doi.org/10.1145/3652032.3657572

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

14, 35, 50] have conducted extensive studies on enhancing
LB-BCSD techniques, focusing mainly on the similarity cal-
culation stage and paying less attention to the function ex-
traction stage.
Function inlining [46] is an optimization strategy em-

ployed by compilers, whereby the code of a callee function
is integrated directly into the caller function. Due to various
compilation options (such as O1 and O3) initiating different
levels of inlining strategies, significant variations arise in
the number of instructions and the control flow structures
of functions compiled from the same source [12, 47]. This
variation substantially impacts the accuracy of the LB-BCSD
model. Research [24] indicates that function inlining can
lead to a reduction in accuracy ranging from 30% to 40%.
Consequently, the LB-BCSD method requires more refined
handling of function inlining to mitigate these impacts.
Function inlining significantly impacts the function ex-

traction phase [3, 32, 58, 62], with previous LB-BCSD meth-
ods [8, 13] resorting to inline emulation strategies to tackle
issues arising from function inlining. Inline emulation [8, 13],
grounded in the principle of normalization, aims to replicate
the compiler’s inlining behavior to eliminate discrepancies
between homologous functions compiled at different opti-
mization levels due to inlining. However, the rules of inline
emulation are influenced by the size of the caller function and
the callee function, both of which change due to function in-
lining, rendering inline emulation ineffective in normalizing
functions. We discovered that although inline emulation can
enhance model accuracy by approximately 10%, significant
differences still persist between homologous functions utiliz-
ing inline emulation rules due to the complexity of function
inlining.

Given that functions are often called multiple times, func-
tion inlining integrates the callee function into each call site,
leading to duplicate code fragments in the binary program.
In contrast to function inlining, code extraction [27] identi-
fies and removes duplicate code from the program, replacing
it with corresponding function calls. Consequently, we devel-
oped CodeExtract, a system based on code extraction tech-
nology. It identifies and extracts duplicate code fragments
within binary internal functions through similaritymatching,
thereby extracting code introduced by function inlining. For
code that cannot be extracted, we proactively inline it into
the caller, eliminating the differences introduced by function
inlining. Compared to inlining emulation, CodeExtract ef-
fectively reduces the discrepancies introduced by function
inlining and brings about a 20% accuracy improvement to
the SOTA LB-BCSD models.

Our main contributions are summarized as follows:

• We explored the impact of function inlining on the
accuracy of the LB-BCSD model and demonstrated
that function inlining significantly affects the accuracy
of the LB-BCSD model. We pointed out that existing

inline emulation solutions cannot adequately address
the issues posed by function inlining and analyzed the
reasons.
• By analyzing the behavior of function inlining, we
designed a code extraction-based approach. This ap-
proach transforms the problem of identifying inlined
functions into a problem of computing duplicate code,
identifying and extracting duplicate code fragments
within binary internal functions through similarity
matching, thereby eliminating discrepancies introduced
by function inlining.
• We developed a system named CodeExtract, based
on code extraction technology, and conducted exper-
iments on three SOTA LB-BCSD models and 11 real-
world applications. The experimental results prove
that CodeExtract can bring 20% accuracy improvement
to the LB-BCSD models.

2 Mitigating Measures for Function
Inlining

Function inlining significantly affects the accuracy of LB-
BCSD models, with many LB-BCSD methods [10, 23, 55, 56]
indicating their accuracy is impacted by function inlining.
To address the discrepancies introduced by function inlining,
BinGo [8] first proposed the concept of inlining emulation,
which was further expanded by Asm2vec [13]. Inlining emu-
lation aims to mitigate the differences between homologous
functions caused by function inlining by selectively inlining
callee functions at the binary level. The goal is to maintain
consistency in the number of instructions and control flow
graphs of functions processed through inlining emulation
across different optimization levels. The heuristic rules fol-
lowed by inlining emulation are as follows:

𝛿 (𝑓𝑠 , 𝑓𝑐) =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑠)
𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑐)

(1)

Here, 𝑓𝑠 and 𝑓𝑐 respectively represent the callee function
and the caller function, while 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑠) and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑠) in-
dicate the number of instructions in the callee and caller
functions, respectively. If the value of 𝛿 is less than 0.6, or
if the number of instructions in the callee function is fewer
than 10, then the inline emulation will proceed to inline the
callee function into the caller function.

2.1 Limitations in Inline Emulation
Inlining emulation aims to mimic the compiler’s inlining be-
havior so that, after undergoing inlining emulation, homolo-
gous functions compiled with different optimization levels
can eliminate the discrepancies caused by function inlining.
Through a detailed analysis of the inlining emulation rules,
we identified two key points: 1) For caller functions with a
larger number of instructions, inlining emulation tends to
prefer inlining callee functions into the caller. This means

CodeExtract: Enhancing Binary Code Similarity Detection with Code Extraction Techniques LCTES ’24, June 24, 2024, Copenhagen, Denmark

that for the same caller function A, compiled with different
compilation options (such as O1 and O3) resulting in a differ-
ent number of instructions, the version of function A with
more instructions may inline more callee functions. This pre-
vents inlining emulation from eliminating the discrepancies
introduced by function inlining. 2) The inlining emulation
rules primarily target callee functions. Similarly, for the same
function A compiled with different options O1 and O3, if
A@O1 and A@O3 call different callee functions, the inlining
emulation rules will inline different callees accordingly, thus
failing to eliminate the discrepancies introduced by function
inlining.

3 Our Technique
Existing inline emulation schemes are influenced by the com-
piler optimization flags when determining whether to inline
functions, thus failing to eliminate the differences caused by
inlining between homologous functions compiled at differ-
ent optimization levels. The core idea of our technology is to
process homologous functions compiled at various optimiza-
tion levels in an optimization-level-independent manner. In
CodeExtract, we will employ two techniques, code extrac-
tion and proproactive inlining, to eliminate the discrepancies
introduced by function inlining. For a callee function, after
inlining, if duplicate code is present in the program, the code
extraction technique is used to extract the duplicate code
into corresponding function calls. If no duplicate code exists,
the proproactive inlining technique is employed to inline the
callee function, which is called only once, into the caller.
In this section, we first introduce the impact of function

inlining on binary programs, then explain how code extrac-
tion and proproactive inlining techniques can eliminate the
differences introduced by function inlining, and finally an-
alyze the feasibility of solving the function inlining issue
using code extraction and proproactive inlining techniques.

3.1 When Does Function Inlining Introduce
Duplicate Code?

Function inlining involves incorporating the callee function
directly into the caller. Given that the prerequisite for code
extraction to be effective is that function inlining leads to the
presence of duplicate code in the program, this section will
analyze the circumstances under which function inlining
results in duplicate code, based on the number of times the
callee function is called.

3.1.1 Callee Function Called Only Once. Figure 1 il-
lustrates the scenario where a callee function, called only
once, undergoes function inlining. In this scenario, Function
A consists of two basic blocks, A1 and A2, while Function C
comprises four basic blocks, C1-C4, and is called by Function
A within the binary program. When inlining Function C,
compilers typically do not inline the instructions from basic

blocks C1 (the prologue) and C4 (the epilogue) into Func-
tion A, as they are primarily responsible for the preservation
and restoration of registers. Instead, the compiler inlines
basic blocks C2 and C3 into Function A, resulting in a new
Function A’.

A1

C2

C3

A2

Function A’

A1

A2

Function A

call C

C1(prologue)

C2

C3

C4（epilogue）

Function C

Figure 1. Diagram illustrating the inlining of a function
called only once. Function C, exclusively invoked by Func-
tion A, is transformed into Function A’ following the inlining
procedure.

After inlining, since there are no other calls to Function C
within the program, compilers usually eliminate the original
Function C to reduce the amount of code [46]. At this point,
as Function C is inlined only once, its basic blocks C2 and
C3 exist solely within Function A’, not introducing duplicate
code, thus the code extraction technique cannot be applied.
For a Function C that is called only once, it may not be
inlined under the O1 compilation option, but could be inlined
under O3, resulting in differences between Function A@O1
and Function A@O3. To eliminate such discrepancies, we
propose a proactive inlining technique, which automatically
inlines all functions in the program that are called only once.

3.1.2 Callee Function Called More Than Once. In our
previous discussions, we utilized proactive inlining tech-
niques for functions that are called only once. Now, we will
analyze the situation when a callee function, called more
than once, undergoes function inlining.

C1(prologue)

C2

C3

C4（epilogue）

Function C

B1

C2

C3

B2

Function B’

A1

A2

Function A

B1

B2

Function B

A1

C2

C3

A2

Function A’

Call C Call C

Figure 2. Illustration of the inlining process for functions
called more than once, with the inlining of identical sections
(basic blocks C2 and C3) of the callee during the process.

Figure 2 depicts a scenario where a callee function is called
more than once, leading to the generation of duplicate code.
In this example, both Function A and Function B consist

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

of two basic blocks and both call Function C. The compiler
inlines Function C into Functions A and B, resulting in the in-
lined Functions A’ and B’. A1, A2, B1, and B2 are the original
basic blocks of Functions A and B, while C2 and C3 are basic
blocks from Function C. We refer to functions that inline the
same basic blocks at different call sites as "inline-stable func-
tions". In this case, both Functions A’ and B’ contain basic
blocks C2 and C3, creating duplicate code. At this point, we
can apply code extraction techniques to address these du-
plicates. If Function C has not been deleted by the compiler,
we replace the instructions in basic blocks C2 and C3 with a
call to Function C. If Function C has been deleted, the code
extraction technique will recreate Function C, place basic
blocks C2 and C3 within it, and then replace the basic blocks
C2 and C3 in Functions A’ and B’ with calls to the newly
created Function C.

C1(prologue)

C2

C3

C6（epilogue）

Function C

B1

C4

C5

B2

Function B’

A1

A2

Function A

B1

B2

Function B

A1

C2

C3

A2

Function A’

Call C Call C C4

C5

Figure 3. Illustration of the inlining process for functions
called more than once, showcasing the inlining of different
parts of the callee function. Function A’ has inlined basic
blocks C1 and C2, while Function B’ has inlined basic blocks
C4 and C5.

However, even if a callee function is inlined at multiple
call sites, it may not result in duplicate code, as illustrated
in Figure 3. Unlike the scenario in Figure 2, Function C in
this example includes branch instructions. If the branch con-
dition is true, it executes a path containing basic blocks C2
and C3; otherwise, it follows a path with basic blocks C4
and C5. Since the compiler optimizes the inlined code and
eliminates dead code, only the executing path’s basic blocks,
C2 and C3, are retained in Function A’, while basic blocks
C4 and C5 are not inlined into Function A’. A similar situa-
tion applies to Function B’, which retains only basic blocks
C4 and C5. We call functions that inline different paths at
different call sites "inline-sensitive functions". In this case,
although Function C is inlined multiple times, since A’ and
B’ retain different basic blocks from Function C, duplicate
code is not introduced into the program (unless the body
of Function C itself is duplicated). If the body of Function
C is deleted, then there is no duplicate code. However, our
analysis of real-world programs reveals that this situation is
uncommon. In Section 3.2, we will further discuss the practi-
cality and effectiveness of the code extraction scheme from
the perspective of real-world programs.

3.2 Feasibility Argument for the Proposed
Approaches

In the previous sections, we employed proactive inlining
techniques for functions called only once and used code
extraction techniques for functions called multiple times.
It is important to note that code extraction technology is
specifically tailored for handling inlining-stable functions
and cannot address inlining-sensitive scenarios. This section
delves into a detailed analysis of the inlining phenomenon
in actual programs, quantifying the proportion of inlining-
sensitive versus inlining-stable functions, and theoretically
validating the feasibility of our approach.

Table 1. This table presents the instances of functions being
inlinedmore than once across different programs. The "Num"
column represents the number of functions in the program
that were inlined more than once. The "Inlining-Stable Num"
column displays the count of inlining-stable functions among
these, and the "Duplication Ratio (D.R.)" column reflects the
proportional relationship between the two.

Programs Nums Inlining-Stable Nums D.R.

blender_r 1767 1671 0.95
cpugcc_r 1727 1538 0.89
cpuxalan_r 2082 2005 0.96
imagick_r 144 132 0.92
leela_r 94 91 0.96
nab_r 36 31 0.86
omnetpp_r 546 526 0.96
perlbench_r 287 246 0.86
povray_r 140 122 0.87
x264_r 137 119 0.87
xz_r 34 33 0.97
Average 635.82 592.18 0.92

We chose the representative SPEC CPU 2017 [6] bench-
mark suite as our evaluation target. By modifying the func-
tion inlining-related code within LLVM [1], we then com-
piled the C/C++ programs from SPEC CPU 2017 to extract
information relevant to function inlining. Our focus was on
determining how many functions in SPEC CPU 2017 were
inlined more than once, identifying which of these functions
were Inlining-Stable, and filtering out programs with fewer
than 50 instances of inlining. The results are presented in
Table 1.

From Table 1, it is evident that, on average, 635 functions
were inlined more than once. Among these, a significant
92% of the functions are inlining-stable, with only 8% be-
ing inlining-sensitive. This implies that the code extraction
approach can cover 92% of the functions that were inlined
multiple times, effectively eliminating the discrepancies in-
troduced by function inlining.

CodeExtract: Enhancing Binary Code Similarity Detection with Code Extraction Techniques LCTES ’24, June 24, 2024, Copenhagen, Denmark

In summary, proactive inlining techniques are suited for
functions called only once (as shown in Figure 1), while code
extraction techniques are appropriate for functions called
multiple times (as depicted in Figure 2). Although code ex-
traction can only handle inline-stable functions among those
called multiple times, we have found that in real programs,
92% of functions are inline-stable. Therefore, our proactive
inlining and code extraction approach is highly practical
and feasible in eliminating the discrepancies introduced by
function inlining.

4 Design
Figure 4 illustrates the overall workflow of CodeExtract,
comprising two main components: proproactive inlining
and code extraction. At the top, we depict the fundamen-
tal workflow of the LB-BCSD method. Initially, function
extraction is performed on both the target binary program
and candidate binary programs. Subsequently, the extracted
functions undergo preprocessing to eliminate differences in-
troduced by compilers. Previous studies [8, 13] utilized inline
emulation for preprocessing to obtain normalized functions,
while this study employs proproactive inlining and code ex-
traction techniques. Following this preprocessing step, the
normalized functions serve as inputs to a neural network,
which computes the similarity between functions and out-
puts matched functions.

The input to the CodeExtract system is functions, and the
output is normalized functions. Identifying duplicate code re-
lies on similarity calculations at the basic block level, which
can be computationally intensive due to the presence of nu-
merous basic blocks in programs. To mitigate computational
costs, the Filter module filters basic blocks in functions, iden-
tifying basic blocks introduced by function inlining, termed
inline basic blocks. Subsequently, similarity calculations are
performed on these inline basic blocks to extract highly sim-
ilar duplicate code, resulting in the output of normalized
functions. To provide better elucidation of our design, we
first provide the following definitions:
Successors (Succ): In a control flow graph, the successors
of a node 𝑛 are the nodes directly reachable from 𝑛.
Predecessors (Pred): In a control flow graph, the predeces-
sors of a node 𝑛 are the nodes from which 𝑛 can be directly
reached.
Descendants: In a control flow graph, the descendants of a
node 𝑛 are all nodes reachable from 𝑛 by following a path of
edges in the forward direction.
Ancestors: In a control flow graph, the ancestors of a node
𝑛 are all nodes from which 𝑛 can be reached by traversing
edges in the backward direction.

4.1 Challenge
CodeExtract eliminates discrepancies introduced by func-
tion inlining by extracting duplicate code within functions,

relying on the calculation of basic block similarity to identify
such duplicate code. However, when analyzing the similarity
of basic blocks within the same program, we encountered
the following challenges:

• Challenge 1: Given that the identification of duplicate
code is based on the calculation of similarity at the
basic block level, and a program may contain a large
number of basic blocks, performing pairwise similarity
calculations among all basic blocks can be very time-
consuming.
• Challenge 2: When performing function inlining, the
compiler optimizes the instructions within the callee
function, leading to significant variations in the in-
structions of the same callee function’s basic blocks
at different call sites. This results in considerable simi-
larity differences for the same basic block in different
contexts.

To address Challenge 1, we designed a Filter module that
avoids the need for pairwise similarity calculations across
all basic blocks in the program by analyzing all potential
"entry point basic blocks" within the control flow graph.
To overcome Challenge 2, we normalized the basic blocks
before calculating their similarity to reduce the impact of
discrepancies caused by inlining. For detailed methods and
technical specifics, please refer to Section 4.3.

4.2 Filter Module
Given the vast number of functions in binary programs,
each comprising numerous basic blocks, computing similar-
ity for every pair of basic blocks within the program would
be exceedingly time-consuming. To circumvent this, the Fil-
ter module analyzes the basic blocks within the program,
filtering out those not introduced by function inlining. As
previously mentioned, functions processed through inlin-
ing exhibit a unique characteristic in the control flow graph
(CFG): they connect to external instructions solely through
a unified entry point, referred to as the "entry basic block."
Since only the entry basic block and its descendants could
be basic blocks introduced by inlining, limiting similarity
calculations to these blocks can significantly reduce compu-
tational demands.
The identification of entry basic blocks is based on their

distinct characteristic: other basic blocks stemming from an
entry basic block can only have the entry basic block or its
successor blocks as predecessors. We traverse all basic blocks
within a function, utilizing this feature to determine if each
block is a potential entry basic block. Initially, we consider
each basic block as a potential entry basic block and exhaus-
tively enumerate all control flow subgraphs starting from it
within the CFG. Subsequently, we assess whether these basic
blocks align with the characteristics of an entry basic block, a
process elaborately described in Algorithm 1. This algorithm
accepts a function extracted from a binary program as input

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

Output Input (Binary)

Proactive
Inlining

Target
Binary

Candidate
Binary

Normalized
Target Functions

Normalized
Candidate Functions

Neural
Network

Matched
Functions

Function Match

Code
Extraction

Functions Filter Basic
Blocks

Normalized
Functions

Preprocess Input (Function)

Target
Functions

Candidate
Functions

Similaty
Calculate

Similar
Basic Blocks

Repeated
Code Extract

Figure 4.Workflow of CodeExtract: At the top is the workflow of the LB-BCSD method. Our technique involves proactive
inline and code extrication.

Algorithm 1: Identifying Entry Basic Blocks
Input: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 , denoting all functions within the

program.
Output: 𝑒𝑛𝑡𝑟𝑦𝐵𝐵, denoting all entry basic blocks.

1 𝑒𝑛𝑡𝑟𝑦𝐵𝐵 ← {}
2 for each 𝑓 𝑢𝑛𝑐 ∈ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
3 for each 𝑏𝑏 ∈ 𝑓 𝑢𝑛𝑐 do
4 if isEntryBB(bb, k=3) then
5 entryBB.append(bb)

6 return 𝑒𝑛𝑡𝑟𝑦𝐵𝐵

7

8 function isEntryBB(bb,k)
9 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← Enumerate control flow subgraphs

starting with 𝐵𝐵, with subgraph size 𝑘
10 for each 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ ∈ 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 do
11 Set 𝑐ℎ𝑒𝑐𝑘𝐹𝑙𝑎𝑔 := 𝑇𝑟𝑢𝑒

12 for each 𝑛𝑜𝑑𝑒 ∈ 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ do
13 if 𝑏𝑏 ∉ 𝑛𝑜𝑑𝑒.𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 then
14 Set 𝑐ℎ𝑒𝑐𝑘𝐹𝑙𝑎𝑔 := 𝐹𝑎𝑙𝑠𝑒

15 Break
16 if 𝑛𝑜𝑑𝑒.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ∉ 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ then
17 Set 𝑐ℎ𝑒𝑐𝑘𝐹𝑙𝑎𝑔 := 𝐹𝑎𝑙𝑠𝑒

18 Break
19 if 𝑐ℎ𝑒𝑐𝑘𝐹𝑙𝑎𝑔 then
20 return 𝑇𝑟𝑢𝑒

21 return 𝐹𝑎𝑙𝑠𝑒

and outputs all identified potential entry basic blocks. While
traversing each basic block, we employ the isEntryBB(BB, k)
function to determine its conformity to the characteristics of
an entry basic block and return all possible entry basic blocks
(lines 1-6). In this function, we first exhaustively enumerate
all control flow subgraphs starting from BB, limiting the size
of the subgraph to k basic blocks to ensure that the control
flow subgraph of the identified entry basic block contains at
least k basic blocks. If the number of basic blocks introduced
into the caller by an inlined callee function is less than k,

then these less numerous callee functions’ entry points will
not be recognized as entry basic blocks.

For each control flow subgraph, we further traverse each
node, checking if its predecessor is the entry basic block or
its descendants. As long as there is a control flow subgraph
that makes a basic block meet the conditions of an entry
basic block, we consider it as such (lines 10-21). In practice,
we set k=3, and in Section 5.3, we discuss the impact of the
number of basic blocks in a function on the accuracy of the
LB-BCSD model. Functions with fewer than 3 inline basic
blocks have a negligible impact on the accuracy of the LB-
BCSD method, thus obviating the need to extract these less
frequent duplicate codes.
Once the entry basic blocks are identified, we only need

to mark their direct successors as the basic blocks to be
matched, rather than all descendants. This is because, in the
subsequent duplicate code extraction algorithm, given a pair
of similar basic blocks, we continue to match the similarity
of other basic blocks near this pair as starting points. This
approach significantly reduces the number of basic blocks to
bematched, thereby effectively decreasing the computational
overhead of basic block similarity calculations.

4.3 Similarity Calculate Module
After acquiring the basic blocks to be matched, the subse-
quent task involves calculating the similarity between these
blocks. In the domain of LB-BCSD, computing similarity
at the basic block level poses a significant challenge. This
is primarily because, compared to functions, basic blocks
typically contain fewer instructions, making it difficult for
LB-BCSD methods to generate accurate semantic vectors for
basic blocks. To address this challenge, SOTA LB-BCSD [14,
41, 57, 63] approaches leverage the contextual information
of basic blocks to assess their similarity, a strategy that has
shown effective results in matching basic blocks across dif-
ferent programs.
However, the main objective of this paper is to identify

duplicate code within the same binary program. In this sce-
nario, function inlining results in the callee function being
inlined into different call sites, causing originally similar

CodeExtract: Enhancing Binary Code Similarity Detection with Code Extraction Techniques LCTES ’24, June 24, 2024, Copenhagen, Denmark

basic blocks to be placed in entirely different contexts. Thus,
existing LB-BCSD methods based on contextual information
at the basic block granularity are not suitable for addressing
the basic block matching problem within the same binary
program.

We observe that within the same binary program, when a
callee function is inlined into different call sites, its control
flow structure and instructions largely remain unchanged.
This observation leads us to treat the instructions in the
basic blocks as strings and evaluate the similarity of ba-
sic blocks by calculating the edit distance between these
instruction strings. Edit distance [43, 53] (also known as
Levenshtein distance) measures the minimum number of
single-character editing operations required to transform
one string into another (including insertion, deletion, and
substitution). A smaller edit distance implies closer func-
tional proximity of the basic blocks.
Empirically, we consider basic blocks with a similarity

exceeding 0.95 to be similar. However, in practice, optimiza-
tions by the compiler during function inlining may change
the register names in the callee functions, increasing the edit
distance between two similar basic blocks. This paper will
further explore the root causes of this issue and propose cor-
responding strategies to improve the accuracy of duplicate
code identification within the same binary program.

1: mov rax, [rcx]
2: mov rdx, [rcx+20h]
3; sub rax, rdx
4: jle loc_40CDD5

1: mov rdx, [rcx]
2: mov rdi, [rcx+20h]
3: sub rdx, rdi
4: jle loc_40A680

1: mov rax, [rcx]
2: mov rdx, [rcx+20h]
3: sub rax, rdx
4: jle IMM

（a) Basic block at callsight 1 （b) Basic block at callsight 2

（c) Normalized basic block

Figure 5. Due to compiler optimizations, the same basic
block of a callee function utilizes different registers at various
call sites (a) and (b). Through data flow analysis, these basic
blocks from different call sites have been normalized, as
illustrated in figure (c).

4.3.1 Differences Introduced by Variations in Regis-
ter Names. In Figure 5, the same basic block of the callee
function is inlined at different call sites 1 and 2. Due to the
compiler’s optimization that merges the callee and caller,
different registers are utilized at different call sites [46]. This
variance due to compiler optimization can be mitigated by
renaming the registers within the basic block. This process is
achieved through def-use analysis of the registers, where reg-
isters exhibiting identical def-use behavior are assigned the

same name. In Figure 5(a), we observe that call site 1 primar-
ily performs def operations on 𝑟𝑎𝑥 and 𝑟𝑑𝑥 , with 𝑟𝑎𝑥 ’s value
originating from memory pointed to by 𝑟𝑐𝑥 and serving as
the first operand of the 𝑠𝑢𝑏 instruction; 𝑟𝑑𝑥 ’s value comes
from memory at 𝑟𝑐𝑥 + 20 and serves as the 𝑠𝑢𝑏 instruction’s
second operand. In Figure 5(b), 𝑟𝑑𝑥 exhibits the same def-use
behavior as 𝑟𝑎𝑥 in Figure 5(a), while 𝑟𝑑𝑖 behaves similarly
to 𝑟𝑑𝑥 in Figure 5(a). Hence, we rename the registers used
in Figure 5(b), with the results shown in Figure 5(c). Addi-
tionally, to eliminate differences introduced by varying jump
instruction targets due to different calling contexts, jump
instruction targets are uniformly replaced with the 𝐼𝑀𝑀

label.

4.4 Repeated Code Extract Module
After completing the similarity calculations for basic blocks,
we identify similar basic blocks. For instance, if basic block
A is similar to basic blocks B and C, this suggests that ABC
might be the result of the same function being inlined at
different call sites. To identify all inlined basic blocks, Code-
Extract does not immediately extract code from these similar
basic blocks. Instead, based on control flow, it continues to
analyze the similarity of neighboring basic blocks to the sim-
ilar ones until no new similar basic blocks are identified, and
only then does it perform the extraction of duplicate code.
For example, in Figure 2, once we confirm that the basic
block C2 in function A’ and function B’ are similar, we mark
the basic block C2 as duplicate code. Next, we assess the pre-
decessors and successors of these duplicate codes—whether
the predecessor and successor nodes of the basic block C2 are
similar. This search process continues until no more similar
basic blocks are found. This entire process is described by
Algorithm 2.

Algorithm 2 takes as input a function 𝑓 and a set of similar
basic blocks 𝑓 𝑏𝑏 within function 𝑓 , and outputs the modi-
fied function 𝑓 ′. This algorithm iterates through each basic
block 𝑡𝑏𝑏 in 𝑓 𝑏𝑏, searching for all instances of duplicate
code starting from 𝑡𝑏𝑏, and then removes these codes from
function 𝑓 (lines 1-8), inserting a call instruction at the ap-
propriate location to invoke the removed duplicate code. The
𝐹𝑖𝑛𝑑𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 function takes two basic blocks 𝑡𝑏𝑏 and
𝑠𝑏𝑏 as inputs, aiming to recursively search for similar basic
blocks within the predecessors and successors of 𝑡𝑏𝑏 and
𝑠𝑏𝑏, adding them to the 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 collection of dupli-
cate codes (lines 12-20). If the number of basic blocks in the
𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 collection is less than 𝑘 , it returns an empty
set; otherwise, it returns the 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 collection. Here,
𝑠𝑖𝑚 refers to the edit distance mentioned earlier, for which
we empirically set 𝛾 = 0.95. In practice, we set 𝑘 = 3, and
in Table 3, we demonstrate that functions with fewer than
3 basic blocks have a negligible impact on the accuracy of
the LB-BCSD model. Therefore, during code extraction, we
focus only on those inlined functions with a number of basic
blocks greater than or equal to 3.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

Algorithm 2: Identifying Duplicate Code
Input: 𝑓 : Target Function, 𝑓 𝑏𝑏𝑠: similar basic blocks

belongs to 𝑓

Output: Extracted Function f’
1 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 := 𝑠𝑒𝑡 ()
2 for each 𝑡𝑏𝑏 ∈ 𝑓 𝑏𝑏𝑠 do
3 𝑠𝑏𝑏𝑠 := basic blocks similar to 𝑡𝑏𝑏
4 for each 𝑠𝑏𝑏 ∈ 𝑠𝑏𝑏𝑠 do
5 𝑐𝑜𝑑𝑒 := findRepeatedCode(tbb, sbb)
6 if 𝑐𝑜𝑑𝑒 ≠ [] then
7 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒.𝑎𝑑𝑑 (𝑐𝑜𝑑𝑒)

8 𝑓 ′ := 𝑓 − 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒
9 return (f’)

10

11 Function findRepeatedCode(𝑡𝑏𝑏, 𝑠𝑏𝑏):
12 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒 = [𝑡𝑏𝑏]
13 𝑏𝑘_𝑡𝑏𝑏 := 𝑡𝑏𝑏

14 while 𝑠𝑖𝑚(𝑡𝑏𝑏.𝑝𝑟𝑒𝑑, 𝑠𝑏𝑏.𝑝𝑟𝑒𝑑) > 𝛾 do
15 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒.𝑎𝑑𝑑 (𝑡𝑏𝑏.𝑝𝑟𝑒𝑑)
16 𝑡𝑏𝑏 := 𝑡𝑏𝑏.𝑝𝑟𝑒𝑑

17 𝑠𝑏𝑏 := 𝑠𝑏𝑏.𝑝𝑟𝑒𝑑

18 𝑡𝑏𝑏 := 𝑏𝑘_𝑡𝑏𝑏
19 while 𝑠𝑖𝑚(𝑡𝑏𝑏.𝑠𝑢𝑐𝑐, 𝑠𝑏𝑏.𝑠𝑢𝑐𝑐) > 𝛾 do
20 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒.𝑎𝑑𝑑 (𝑡𝑏𝑏.𝑠𝑢𝑐𝑐)
21 𝑡𝑏𝑏 := 𝑡𝑏𝑏.𝑠𝑢𝑐𝑐

22 𝑠𝑏𝑏 := 𝑠𝑏𝑏.𝑠𝑢𝑐𝑐

23 if 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒.𝑠𝑖𝑧𝑒 < 𝑘 then
24 return []
25 return 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝐶𝑜𝑑𝑒

5 Evaluation
CodeExtract is implemented on the angr [49] platform. To
comprehensively evaluate our technique, we have set the
following research questions (RQs) for in-depth exploration:
RQ1: How much does function inlining affect the accuracy
of the LB-BCSD model?
RQ2: What is the impact of the number of basic blocks in a
function on the LB-BCSD model?
RQ3: Can CodeExtract significantly improve the accuracy
of the LB-BCSD model when facing function inlining?
RQ4: why CodeExtract can enhance the accuracy of the
LB-BCSD model?

5.1 Experiment Setup
We conduct the experiments on a server with a Intel Xeon
Gold 6132 CPU at 2.60GHz, 256 GB memory, 8 Tesla V100
GPUs, and Ubuntu 18.04.

5.1.1 BaselineModels. We selected three SOTALB-BCSD
models as baselines: a) SAFE [35] employs an RNN struc-
ture with a self-attention mechanism to generate semantic
embeddings for functions; b) Asm2vec [13] utilizes the PV-
DM model combined with the program’s control flow infor-
mation to generate semantic embeddings for functions; c)
JTrans [50] encodes control flow information into a Trans-
former architecture to produce semantic embeddings for
functions. These three models are open-source, and we uti-
lized the implementations provided by the authors of the
papers for the binary similarity matching task.

5.1.2 Test Datasets. The SPEC CPU 2017 suite, which
gathers programs covering a broad spectrum of computa-
tional and application scenarios, has emerged as the bench-
mark of choice for numerous research studies [42]. Leverag-
ing this, we selected C/C++ programs from the SPEC CPU
2017 [6] test suite to create our dataset, excluding those with
fewer than 50 instances of function inlining. As a result,
our dataset encompasses 11 real-world projects, including
blender_r, cpugcc_r, cpuxalan_r, imagick_r, leela_r, nab_r,
omnetpp_r, perlbench_r, povray_r, x264_r, and xz_r. In align-
ment with previous research [13, 24, 50], we utilized pro-
grams compiled with the O1 and O3 optimization options of
llvm-10.0 [1] for our test set.

5.1.3 Metrics. In this experiment, we employed the top-
10 accuracy as our evaluation metric. This metric focuses
on whether the correct answer (i.e., the function compiled
from the same source code as the queried binary function)
appears within the top 10 ranked options among all predic-
tions when iteratively querying a set of binary functions
from the candidate function pool. Furthermore, we also con-
ducted an analysis on the false positive and false negative
rates of CodeExtract.

5.2 RQ1: Impact of Function Inlining on Model
Accuracy

In this section, we evaluate the impact of function inlining
on model accuracy. For each baseline model, we input bi-
nary programs with function inlining enabled and disabled,
respectively. By comparing the accuracy changes of the mod-
els with function inlining turned on and off, we represent
the influence of function inlining on model accuracy. For
every binary program in our dataset, we randomly sample
500 functions from the O0 binary and query them one by
one in a pool composed of the corresponding 500 functions
from the O3 binary. In other words, for each query, there is
only one similar function in the function pool. This setup is
consistent with the literature [22, 33, 52, 54].
The results are shown in Table 2. We can see that LB-

BCSD models exhibit high top-10 accuracy for programs
without function inlining, with JTrans reaching an accu-
racy of up to 84%. This demonstrates that existing LB-BCSD

CodeExtract: Enhancing Binary Code Similarity Detection with Code Extraction Techniques LCTES ’24, June 24, 2024, Copenhagen, Denmark

Table 2. The impact of function inlining on model accuracy.
NI represents the top-10 accuracy of the model with inlining
disabled, WI represents the top-10 accuracy of the model
with inlining enabled, and Infl. denotes the influence of func-
tion inlining on model accuracy.

Programs Asm2vec SAFE JTrans
NI WI Infl. NI WI Infl. NI WI Infl.

blender_r 0.86 0.56 0.3 0.77 0.55 0.22 0.88 0.61 0.27
cpugcc_r 0.78 0.51 0.27 0.71 0.46 0.25 0.83 0.60 0.23
cpuxalan_r 0.74 0.43 0.31 0.71 0.42 0.29 0.79 0.50 0.29
imagick_r 0.88 0.55 0.33 0.85 0.54 0.31 0.86 0.51 0.35
leela_r 0.74 0.34 0.40 0.76 0.43 0.33 0.81 0.45 0.36
nab_r 0.83 0.52 0.31 0.79 0.53 0.26 0.85 0.50 0.35
omnetpp_r 0.72 0.31 0.41 0.75 0.43 0.32 0.77 0.38 0.39
perlbench_r 0.89 0.65 0.24 0.84 0.57 0.27 0.86 0.52 0.34
povray_r 0.86 0.57 0.29 0.72 0.47 0.25 0.88 0.63 0.25
x264_r 0.83 0.56 0.27 0.76 0.54 0.22 0.85 0.56 0.29
xz_r 0.91 0.54 0.37 0.73 0.44 0.29 0.92 0.59 0.33
Average 0.82 0.50 0.32 0.76 0.49 0.27 0.84 0.53 0.31

models can correctly identify the relationships between in-
structions and accurately extract the semantic information
of functions. However, the accuracy of existing LB-BCSD
models decreases by about 31% for programs with function
inlining, with JTrans having the highest accuracy at 53%.
This result is consistent with the literature [24], indicating
that function inlining significantly impacts the precision of
LB-BCSD models. Compared to JTrans and Asm2vec, the
impact of function inlining on SAFE is minimal, only 27%.
This is mainly because function inlining significantly affects
the control flow structure of programs, and Asm2vec and
JTrans encode the program’s control flow information into
the function semantic vector, whereas SAFE does not, thus
making its accuracy less impacted by function inlining. In
summary, function inlining significantly affects the accuracy
of LB-BCSD models, causing an average accuracy drop of
30%.

5.3 RQ2: Impact of Callee Function Size on LB-BCSD
Model Accuracy

In this experiment, we investigated the impact of the callee
function’s basic block count on the accuracy of the LB-BCSD
model. To this end, we modified the LLVM source code while
keeping the original inlining rules unchanged. That is, when
the compiler decides to inline a function, we check the num-
ber of basic blocks in that function. If the count is less than
or equal to X, then it is inlined; otherwise, it is not.

The experimental results, as shown in Table 3, reveal that
when function inlining is disabled, the accuracy of the LB-
BCSDmodel is 84%. However, when the compiler only inlines
those functions with a basic block count of two or less, the
accuracy of the LB-BCSDmodel decreases by 3%. This decline
is primarily because smaller functions lack complex control
flow structures and have fewer instructions, thus having
a minimal impact on the accuracy of the LB-BCSD model.

Conversely, when the compiler only inlines functions with
a basic block count of three or less, the accuracy of the LB-
BCSD model drops by 15%. From this, we can infer that the
accuracy of the LB-BCSD is significantly affected only when
the inlined functions have a basic block count of three or
more.

Table 3. Analyzing the impact of the number of basic blocks
in functions with function inlining on the Top-10 accuracy
of the JTrans model. "NI" stands for function inlining dis-
abled, "WI" represents function inlining enabled, and "BBX"
indicates that functions will not be inlined if the number of
basic blocks exceeds X.

Programs NI BB1 BB2 BB3 BB5 BB10 BB15 WI
blender_r 0.88 0.87 0.85 0.75 0.68 0.65 0.63 0.61
cpugcc_r 0.83 0.82 0.79 0.73 0.69 0.64 0.62 0.60
cpuxalan_r 0.79 0.78 0.75 0.65 0.57 0.54 0.52 0.50
imagick_r 0.86 0.85 0.83 0.71 0.68 0.61 0.57 0.51
leela_r 0.81 0.79 0.77 0.55 0.49 0.46 0.44 0.45
nab_r 0.85 0.84 0.83 0.68 0.61 0.57 0.55 0.50
omnetpp_r 0.77 0.75 0.73 0.59 0.45 0.41 0.38 0.38
perlbench_r 0.85 0.84 0.81 0.71 0.69 0.67 0.66 0.52
povray_r 0.87 0.86 0.85 0.66 0.63 0.58 0.57 0.57
x264_r 0.85 0.84 0.82 0.73 0.71 0.65 0.59 0.56
xz_r 0.92 0.90 0.88 0.83 0.81 0.77 0.75 0.59
Average 0.84 0.83 0.81 0.69 0.64 0.60 0.57 0.53

5.4 RQ3: Accuracy Enhancements Brought to
LB-BCSD Models by CodeExtract

In this section, we evaluated the accuracy improvements
brought by inline emulation and CodeExtract to the models.
Since inline emulation algorithms are only implemented
in Asm2vec, to fairly assess the impact of inline emulation
on Asm2vec, SAFE, and JTrans, we modified the function
inlining-related code in LLVM. When compiling the SPEC
benchmarks, functions were inlined according to the rules
of inline emulation discussed earlier. The other settings in
this experiment are the same as in Section 5.2.
The experimental results, as shown in Table 4, indicate

that inline emulation can bring about a 9%-12% accuracy
improvement for the three models. In comparison, code ex-
traction can lead to an 18%-22% accuracy improvement for
the three models. Inline emulation can, to some extent, make
the homologous functions compiled with O1 and O3 more
similar. We discussed the drawbacks of inline emulation in
the section 2.1, so it cannot resolve the issues introduced by
function inlining. On the other hand, our CodeExtract can
extract the inlined basic blocks introduced by function inlin-
ing, making the function’s functionality relatively pure, thus
better eliminating the discrepancies introduced by function
inlining. In the following experiments, we will systematically
evaluate the advantages and disadvantages of inline emula-
tion and CodeExtract in terms of the number of instructions,
false positive rates, and false negative rates.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

Table 4. This table shows the impact of two techniques, inline emulation (IE) and CodeExtract (CE), on model accuracy. Ori.
represents the original top-10 accuracy of the model. IE/CE represent the top-10 accuracy of the model after applying Inline
Emulation and CodeExtract techniques, respectively. Correspondingly, IE/CE Impr. shows the specific improvement of these
two techniques on model accuracy.

Programs Asm2vec SAFE JTrans
Ori. IE IE Impr. CE CE Impr. Ori. IE IE Impr. CE CE Impr. Ori. IE IE Impr. CE CE Impr.

blender_r 0.56 0.65 0.09 0.79 0.19 0.55 0.65 0.1 0.76 0.17 0.61 0.74 0.13 0.83 0.22
cpugcc_r 0.51 0.59 0.08 0.77 0.21 0.46 0.54 0.08 0.71 0.22 0.60 0.71 0.11 0.83 0.23
cpuxalan_r 0.43 0.55 0.12 0.61 0.18 0.42 0.53 0.11 0.61 0.19 0.50 0.65 0.15 0.69 0.19
imagick_r 0.55 0.68 0.13 0.79 0.20 0.54 0.65 0.11 0.75 0.21 0.51 0.65 0.14 0.74 0.23
leela_r 0.34 0.42 0.08 0.65 0.27 0.43 0.49 0.06 0.68 0.23 0.45 0.53 0.08 0.74 0.29
nab_r 0.52 0.63 0.11 0.70 0.18 0.53 0.62 0.09 0.69 0.16 0.50 0.61 0.11 0.75 0.25
omnetpp_r 0.31 0.38 0.07 0.52 0.21 0.43 0.51 0.08 0.60 0.17 0.38 0.47 0.09 0.56 0.18
perlbench_r 0.65 0.78 0.13 0.92 0.27 0.57 0.67 0.10 0.85 0.17 0.52 0.64 0.12 0.80 0.28
povray_r 0.57 0.66 0.09 0.71 0.14 0.47 0.55 0.08 0.60 0.13 0.63 0.74 0.11 0.87 0.24
x264_r 0.56 0.68 0.12 0.76 0.20 0.54 0.64 0.10 0.71 0.17 0.56 0.69 0.13 0.74 0.18
xz_r 0.54 0.65 0.11 0.76 0.19 0.44 0.53 0.09 0.62 0.18 0.59 0.73 0.14 0.78 0.19
Average 0.50 0.61 0.10 0.73 0.20 0.49 0.58 0.09 0.69 0.18 0.53 0.65 0.12 0.76 0.23

5.5 RQ4: False Positive and False Negative Analysis
In Section 5.3, we discovered that the presence of three or
more basic blocks in inlined functions significantly influ-
ences the accuracy of the LB-BCSD model. Consequently,
this experiment aimed to analyze the rates of false positives
and false negatives for both inlining emulation and CodeEx-
tract across all functions and specifically those with a basic
block count of three or more in the respective programs. To
ensure the precision of our assessment, we benchmarked
against the compilation outcomes obtained using LLVMwith
the O3 optimization level.

Table 5. This figure presents an analysis of the false positive
rate (FPR) and false negative rate (FNR) for both inline emula-
tion and CodeExtract methods on program functions. In the
table, "Functions" refers to all functions within a program,
while "Functions_BB3" specifically denotes functions with a
number of basic blocks greater than or equal to 3.

Programs
Inline Emulation CodeExtract

Functions Functions-BB3 Functions Functions-BB3

FPR FNR FPR FNR FPR FNR FPR FNR

blender_r 0.77 0 0.7 0.27 0.79 0.05 0.42 0.03
cpugcc_r 0.78 0.13 0.8 0.15 0.83 0.17 0.55 0.05
cpuxalan_r 0.84 0.1 0.67 0.18 0.86 0.15 0.51 0.09
imagick_r 0.73 0.11 0.95 0.08 0.96 0.16 0.65 0.02
leela_r 0.82 0.09 0.68 0.18 0.76 0.19 0.49 0.19
nab_r 0.81 0.05 0.69 0.15 0.91 0.15 0.44 0.02
omnetpp_r 0.95 0.05 0.74 0.27 0.78 0.17 0.59 0.12
perlbench_r 0.78 0.18 0.8 0.1 0.94 0.24 0.68 0.02
povray_r 0.78 0.09 0.59 0.15 0.92 0.17 0.62 0.03
x264_r 0.78 0.14 0.71 0.14 0.87 0.16 0.59 0.04
xz_r 0.79 0.07 0.63 0.33 0.76 0.19 0.78 0.12
Average 0.8 0.09 0.72 0.18 0.85 0.16 0.57 0.07

The experimental results, presented in Table 5, demon-
strate that CodeExtract exhibits a higher rate of both false

positives and false negatives for all functions within the
respective programs compared to inlining emulation. The
increased false negative rate is attributed to CodeExtract’s
method of only extracting functions with a basic block count
of three or more, ignoring those with fewer than three blocks.
The rise in false positives is due to CodeExtract’s proactive in-
lining strategy, which inlines all functions called only once,
leading to a higher incidence of false positives. However,
CodeExtract shows lower rates of false positives and false
negatives for functions with a basic block count of three
or more, indicating its superior handling of such functions.
Given that the accuracy of the LB-BCSD model is signifi-
cantly affected only when functions with three or more basic
blocks are inlined, employing CodeExtract proves to be more
efficacious in enhancing the LB-BCSDmodel’s accuracy com-
pared to relying solely on inlining emulation.

6 Conclusion
Function inlining significantly affects the accuracy of the LB-
BCSD model, and previous methods based on inline emula-
tion have not been able to fully address the issues introduced
by function inlining. Therefore, we propose a system called
CodeExtract, based on code extraction and proactive inlining
techniques. Compared to inline emulation, CodeExtract can
better eliminate the discrepancies introduced by function in-
lining. Experiments have shown that, in addressing function
inlining issues, CodeExtract can improve the accuracy of the
LB-BCSD model by 20%.

Acknowledgments
This research was supported by the National Natural Sci-
ence Foundation of China (NSFC) under Grants 61902374,
62272442, U1736208, and the Innovation Funding of ICT, CAS
under Grant No.E161040.

CodeExtract: Enhancing Binary Code Similarity Detection with Code Extraction Techniques LCTES ’24, June 24, 2024, Copenhagen, Denmark

References
[1] 2020. LLVM. clang-10. Retrieved Feb 16, 2023 from

https://releases.llvm.org/10.0. (2020).
[2] Qurat Ul Ain,Wasi Haider Butt, MuhammadWaseemAnwar, Farooque

Azam, and Bilal Maqbool. 2019. A Systematic Review on Code Clone
Detection. IEEE Access 7 (2019), 86121–86144. https://doi.org/10.1109/
ACCESS.2019.2918202

[3] Saed Alrabaee, Mourad Debbabi, and Lingyu Wang. 2022. A survey
of binary code fingerprinting approaches: taxonomy, methodologies,
and features. ACM Computing Surveys (CSUR) 55, 1 (2022), 1–41.

[4] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone
detection using abstract syntax trees. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). 368–377.
https://doi.org/10.1109/ICSM.1998.738528

[5] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer:
accurate comparison of binary executables. In Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop.
1–10.

[6] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC
CPU2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering.
41–42.

[7] Silvio Cesare, Yang Xiang, and Wanlei Zhou. 2013. Control flow-based
malware variantdetection. IEEE Transactions on Dependable and Secure
Computing 11, 4 (2013), 307–317.

[8] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,
Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-
architecture cross-os binary search. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 678–689.

[9] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical simi-
larity of binaries. Acm Sigplan Notices 51, 6 (2016), 266–280.

[10] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. Firmup: Precise
static detection of common vulnerabilities in firmware. ACM SIGPLAN
Notices 53, 2 (2018), 392–404.

[11] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in
executables. Acm Sigplan Notices 49, 6 (2014), 349–360.

[12] Jack W Davidson and Anne M Holler. 1988. A study of a C function
inliner. Software: Practice and Experience 18, 8 (1988), 775–790.

[13] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019.
Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 472–489.

[14] Yue Duan, Xuezixiang Li, JinghanWang, and Heng Yin. 2020. Deepbin-
diff: Learning program-wide code representations for binary diffing.
In Network and Distributed System Security Symposium.

[15] Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of
executable objects (english version). Sstic 5, 1 (2005), 3.

[16] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley.
2014. Blanket execution: Dynamic similarity testing for program
binaries and components. In 23rd USENIX Security Symposium (USENIX
Security 14). 303–317.

[17] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and
Mourad Debbabi. 2014. Binclone: Detecting code clones in malware. In
2014 Eighth International Conference on Software Security and Reliability
(SERE). IEEE, 78–87.

[18] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automat-
ically finding semantic differences in binary programs. In International
Conference on Information and Communications Security. Springer, 238–
255.

[19] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018.
Vulseeker: A semantic learning based vulnerability seeker for cross-
platform binary. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 896–899.

[20] Irfan Ul Haq and Juan Caballero. 2021. A survey of binary code
similarity. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–38.

[21] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-
architecture binary semantics understanding via similar code compar-
ison. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. IEEE, 57–67.

[22] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and
Dawu Gu. 2018. BinMatch: A Semantics-Based Hybrid Approach on
Binary Code Clone Analysis. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 104–114. https://doi.
org/10.1109/ICSME.2018.00019

[23] He Huang, Amr M Youssef, and Mourad Debbabi. 2017. Binsequence:
Fast, accurate and scalable binary code reuse detection. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security. 155–166.

[24] Ang Jia, Ming Fan,Wuxia Jin, Xi Xu, Zhaohui Zhou, Qiyi Tang, Sen Nie,
Shi Wu, and Ting Liu. 2023. 1-to-1 or 1-to-n? Investigating the Effect
of Function Inlining on Binary Similarity Analysis. ACM Transactions
on Software Engineering and Methodology 32, 4 (2023), 1–26.

[25] Lichen Jia, Yang Yang, Jiansong Li, Hao Ding, Jiajun Li, Ting Yuan,
Lei Liu, and Zihan Jiang. 2023. MTMG: A Framework for Generating
Adversarial Examples Targeting Multiple Learning-Based Malware
Detection Systems. In Pacific Rim International Conference on Artificial
Intelligence. Springer, 249–261.

[26] Lichen Jia, Yang Yang, Bowen Tang, and Zihan Jiang. 2023. ERMDS:
A obfuscation dataset for evaluating robustness of learning-based
malware detection system. BenchCouncil Transactions on Benchmarks,
Standards and Evaluations 3, 1 (2023), 100106.

[27] Raghavan Komondoor and Susan Horwitz. 2003. Eliminating duplica-
tion in source code via procedure extraction. Technical Report. University
of Wisconsin-Madison Department of Computer Sciences.

[28] J. Krinke. 2001. Identifying similar code with program dependence
graphs. In Proceedings Eighth Working Conference on Reverse Engineer-
ing. 301–309. https://doi.org/10.1109/WCRE.2001.957835

[29] Xuezixiang Li, Yu Qu, and Heng Yin. 2021. Palmtree: Learning an
assembly language model for instruction embedding. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 3236–3251.

[30] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2017. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software and algorithm plagiarism
detection. IEEE Transactions on Software Engineering 43, 12 (2017),
1157–1177.

[31] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2017. Semantics-Based Obfuscation-Resilient Binary Code Similarity
Comparison with Applications to Software and Algorithm Plagiarism
Detection. IEEE Transactions on Software Engineering 43, 12 (2017),
1157–1177. https://doi.org/10.1109/TSE.2017.2655046

[32] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie,
Xu Zhou, Danjun Liu, and Kai Lu. 2023. VulHawk: Cross-architecture
Vulnerability Detection with Entropy-based Binary Code Search.. In
NDSS.

[33] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick
Fratantonio, Mohamad Mansouri, and Davide Balzarotti. 2022. How
machine learning is solving the binary function similarity problem. In
31st USENIX Security Symposium (USENIX Security 22). 2099–2116.

[34] EhsanMashhadi andHadi Hemmati. 2021. Applying CodeBERT for Au-
tomated Program Repair of Java Simple Bugs. arXiv:2103.11626 [cs.SE]

[35] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto
Baldoni, and Leonardo Querzoni. 2019. Safe: Self-attentive function
embeddings for binary similarity. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. Springer,
309–329.

[36] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017.
{BinSim}: Trace-based Semantic Binary Diffing via System Call Sliced

https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1109/TSE.2017.2655046
https://arxiv.org/abs/2103.11626

LCTES ’24, June 24, 2024, Copenhagen, Denmark Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang

Segment Equivalence Checking. In 26th USENIX Security Symposium
(USENIX Security 17). 253–270.

[37] Jiang Ming, Dongpeng Xu, and Dinghao Wu. 2015. Memoized
semantics-based binary diffing with application to malware lineage
inference. In IFIP International Information Security and Privacy Con-
ference. Springer, 416–430.

[38] Lina Nouh, Ashkan Rahimian, Djedjiga Mouheb, Mourad Debbabi,
and Aiman Hanna. 2017. Binsign: fingerprinting binary functions to
support automated analysis of code executables. In IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer,
341–355.

[39] Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-
Yan Liu. 2021. How could neural networks understand programs?. In
International Conference on Machine Learning. PMLR, 8476–8486.

[40] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and
Christian Rossow. 2014. Leveraging semantic signatures for bug search
in binary programs. In Proceedings of the 30th Annual Computer Security
Applications Conference (New Orleans, Louisiana, USA) (ACSAC ’14).
Association for Computing Machinery, New York, NY, USA, 406–415.
https://doi.org/10.1145/2664243.2664269

[41] Kimberly Redmond, Lannan Luo, and Qiang Zeng. 2018. A
cross-architecture instruction embedding model for natural lan-
guage processing-inspired binary code analysis. arXiv preprint
arXiv:1812.09652 (2018).

[42] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Un-
leashing the hidden power of compiler optimization on binary code
difference: An empirical study. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation. 142–157.

[43] Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit
distance. IEEE Transactions on Pattern Analysis andMachine Intelligence
20, 5 (1998), 522–532.

[44] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and
Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection to
big-code. In Proceedings of the 38th International Conference on Software
Engineering (Austin, Texas) (ICSE ’16). Association for Computing
Machinery, New York, NY, USA, 1157–1168. https://doi.org/10.1145/
2884781.2884877

[45] Samuel Henrique Silva and Peyman Najafirad. 2020. Opportunities and
challenges in deep learning adversarial robustness: A survey. arXiv
preprint arXiv:2007.00753 (2020).

[46] Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Un-
derstanding and exploiting optimal function inlining. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 977–989.

[47] Jon Tschudi, Marion O’Farrell, and Kari Anne Hestnes Bakke. 2018.
Inline spectroscopy: From concept to function. Applied Spectroscopy
72, 9 (2018), 1298–1309.

[48] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-source
tools and benchmarks for code-clone detection: past, present, and
future trends. SIGAPP Appl. Comput. Rev. 19, 4 (jan 2020), 28–39.
https://doi.org/10.1145/3381307.3381310

[49] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation
of binary analysis. In 2017 IEEE Cybersecurity Development (SecDev).
IEEE, 8–9.

[50] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu,
Jianwei Zhuge, and Chao Zhang. 2022. jTrans: jump-aware transformer

for binary code similarity detection. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis.
1–13.

[51] ShuaiWang andDinghaoWu. 2017. In-memory fuzzing for binary code
similarity analysis. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 319–330.

[52] ShuaiWang andDinghaoWu. 2017. In-memory fuzzing for binary code
similarity analysis. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 319–330.

[53] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-join: an efficient al-
gorithm for similarity joins with edit distance constraints. Proceedings
of the VLDB Endowment 1, 1 (2008), 933–944.

[54] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan
Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang.
2023. Improving Binary Code Similarity Transformer Models by
Semantics-Driven Instruction Deemphasis. (2023).

[55] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
2017. Neural network-based graph embedding for cross-platform bi-
nary code similarity detection. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security. 363–376.

[56] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu.
2021. Interpretation-enabled software reuse detection based on a multi-
level birthmark model. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 873–884.

[57] Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan Zhou. 2021. Codee:
a tensor embedding scheme for binary code search. IEEE Transactions
on Software Engineering (2021).

[58] Shouguo Yang, Chaopeng Dong, Yang Xiao, Yiran Cheng, Zhiqiang Shi,
Zhi Li, and Limin Sun. 2023. Asteria-Pro: Enhancing Deep-Learning
Based Binary Code Similarity Detection by Incorporating Domain
Knowledge. ACM Transactions on Software Engineering and Methodol-
ogy (2023).

[59] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu
Shi, Carson Harmon, and Xiangyu Zhang. 2020. PMP: Cost-effective
Forced Execution with Probabilistic Memory Pre-planning. In 2020
IEEE Symposium on Security and Privacy (SP). 1121–1138. https://doi.
org/10.1109/SP40000.2020.00035

[60] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu.
2020. Order matters: semantic-aware neural networks for binary code
similarity detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 1145–1152.

[61] Peihua Zhang, Chenggang Wu, Mingfan Peng, Kai Zeng, Ding Yu,
Yuanming Lai, Yan Kang, Wei Wang, and Zhe Wang. 2023. Khaos: The
impact of inter-procedural code obfuscation on binary diffing tech-
niques. In Proceedings of the 21st ACM/IEEE International Symposium
on Code Generation and Optimization. 55–67.

[62] Xiaoya Zhu, Junfeng Wang, Zhiyang Fang, Xiaokang Yin, and Shengli
Liu. 2022. BBDetector: A Precise and Scalable Third-Party Library
Detection in Binary Executables with Fine-Grained Function-Level
Features. Applied Sciences 13, 1 (2022), 413.

[63] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and
Zhexin Zhang. 2018. Neural machine translation inspired binary
code similarity comparison beyond function pairs. arXiv preprint
arXiv:1808.04706 (2018).

Received 2024-02-29; accepted 2024-04-01

https://doi.org/10.1145/2664243.2664269
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1109/SP40000.2020.00035
https://doi.org/10.1109/SP40000.2020.00035

	Abstract
	1 Introduction
	2 Mitigating Measures for Function Inlining
	2.1 Limitations in Inline Emulation

	3 Our Technique
	3.1 When Does Function Inlining Introduce Duplicate Code?
	3.2 Feasibility Argument for the Proposed Approaches

	4 Design
	4.1 Challenge
	4.2 Filter Module
	4.3 Similarity Calculate Module
	4.4 Repeated Code Extract Module

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Impact of Function Inlining on Model Accuracy
	5.3 RQ2: Impact of Callee Function Size on LB-BCSD Model Accuracy
	5.4 RQ3: Accuracy Enhancements Brought to LB-BCSD Models by CodeExtract
	5.5 RQ4: False Positive and False Negative Analysis

	6 Conclusion
	Acknowledgments
	References

