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Abstract
With rapid advances in network hardware, far memory has
gained a great deal of traction due to its ability to break the
memory capacity wall. Existing far memory systems fall into
one of two data paths: one that uses the kernel’s paging sys-
tem to transparently access far memory at the page granu-
larity, and a second that bypasses the kernel, fetching data
at the object granularity. While it is generally believed that
object fetching outperforms paging due to its fine-grained ac-
cess, it requires significantly more compute resources to run
object-level LRU and eviction.

We built Atlas, a hybrid data plane enabled by a runtime-
kernel co-design that simultaneously enables accesses via
these two data paths to provide high efficiency for real-world
applications. Atlas uses always-on profiling to continuously
measure page locality. For workloads already with good lo-
cality, paging is used to fetch data, whereas for those with-
out, object fetching is employed. Object fetching moves
objects that are accessed close in time to contiguous local
space, dynamically improving locality and making the exe-
cution increasingly amenable to paging, which is much more
resource-efficient. Our evaluation shows that Atlas improves
the throughput (e.g., by 1.5× and 3.2×) and reduces the tail
latency (e.g., by one and two orders of magnitude) when us-
ing remote memory, compared with AIFM and Fastswap, the
state-of-the-art techniques respectively in the two categories.

1 Introduction
Today’s datacenters commonly suffer from low memory uti-
lization [20]; yet, datacenter applications are increasingly
memory-constrained [19, 35, 41, 61] due to their need to hold
large datasets in memory for quick data analytics [11, 75]
or machine learning [8, 52]. Thanks to the high bandwidth
and low latency provided by modern network fabrics such
as InfiniBand, far memory techniques [9, 24, 56, 66–68] en-
able an abstraction of unlimited memory for applications by
allowing them to use available memory on remote servers,
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thereby simultaneously improving application performance
and datacenters’ overall memory utilization.

Although techniques such as RDMA enable fast network
accesses, each remote access is still at least an order of mag-
nitude slower than a local access. As such, it is paramount
to optimize the remote access data plane so that applications
can benefit from increased memory capacity without suffer-
ing a significant performance hit. A major line of work
for accessing remote memory is using the kernel’s paging
system, exemplified by techniques such as InfiniSwap [24],
Fastswap [9], Canvas [67] and Hermit [54]. These tech-
niques allow applications to transparently access far mem-
ory at the page granularity, using the kernel’s swap system
to swap pages in and out between local and remote memory.

While paging works well for applications that perform
bulk data movement and exhibit clear (sequential or strided)
access patterns, its coarse granularity incurs substantial I/O
amplification (i.e., pages loaded only contain a small amount
of useful data) for applications that exhibit irregular (or ran-
dom) access patterns, such as Memcached [5] and graph ap-
plications [33]. To reduce I/O amplification, a recent line of
work exemplified by AIFM [56] and Kona [13] advocates to
access data at a much finer (object) granularity using a user-
space runtime system. Swapping objects, rather than pages,
can significantly reduce the amount of useless data swapped,
leading to higher efficiency. Furthermore, since objects are
the data abstraction for developers to write programs, they
carry semantics (i.e., user intention) that can be exposed to
and used by the runtime to perform additional optimizations,
such as data-structure-based prefetching.

Fetching objects at runtime, however, comes at a cost. A
drawback that was often overlooked by existing works is that
object fetching requires non-trivial compute resources to pro-
file object usage, identify patterns, and perform object-level
LRU and eviction. For instance, running an object-level LRU
algorithm is one order of magnitude more expensive than
page-based LRU due to a huge number of objects to be pro-
cessed and the lack of hardware support for tracking object
accesses. This overhead is significantly more pronounced in
real-world scenarios where CPUs are all busy with execut-
ing application threads—given a tight time budget, memory



management threads cannot scan enough objects to make ac-
curate LRU and eventually have to evict arbitrary objects.

As a result, the right access mechanism is essentially the
result of a tradeoff between program locality (i.e., how bad
I/O amplification can be) and the amount of compute re-
sources available (i.e., how many cores can be dedicated to
object-level memory management tasks). For programs with
poor locality, the overhead of object-level memory manage-
ment can be offset from the large gains of reducing I/O ampli-
fication. On the other hand, for programs with good locality
and insignificant I/O amplification, the overhead of object
fetching stands out, especially in an environment where ap-
plications have taken all compute resources (see §3).

There is a recent line of compiler-based techniques (as
exemplified by Mira [25]) that profile a program offline to
understand such a tradeoff, so that compiler can statically
choose the mechanism for each data access when compil-
ing the program. However, offline profiling hinges upon pro-
gram input. For interactive applications such as Memcached,
their input data comes from users and keeps changing, ren-
dering a dry-run-based technique ineffective.
Major Insight. The main question we ask in this paper is:
can we enable always-on profiling for an application to iden-
tify its access patterns and dynamically switch between pag-
ing and object fetching to adapt to the observed patterns?
This approach, if implemented efficiently, has two advan-
tages over the state-of-the-art techniques. First, its contin-
uous profiling identifies patterns on-the-fly for different com-
putation stages or parallel threads accessing different data
structures, even if the program input keeps changing. As a
result, it can quickly change the access path to use a more ef-
ficient fetching mechanism. Second, for programs with irreg-
ular patterns, object fetching moves objects that are accessed
close in time into contiguous memory space, dynamically im-
proving locality as the program executes. This makes it pos-
sible for the execution to be increasingly amenable to paging,
which has higher resource efficiency (see §3).

Although promising, realizing this insight requires over-
coming three major challenges, as elaborated below:

The first challenge is how to continuously and accurately
profile an application with low overhead. Kernel-based page-
level profiling, though efficient, does not provide sufficient
information with respect to fine-grained data locality. For
example, if one single hot object on a page keeps getting
accessed but none of other objects do, the kernel-based pro-
filing would identify the page as a hot page although the
page clearly possesses poor locality and its accesses should
go through object fetching, not paging.

To enable fine-grained profiling, Atlas divides a page into
a set of cards, each of which is a unit for our locality mea-
surement. We leverage the runtime (and in particular, a read
barrier) to compute a card access table (CAT) (§4.3) for each
page, which is a bitmap where each bit corresponds to a card
(i.e., consecutive 16 bytes) on the page and a set bit repre-

sents that the card has been accessed since the page was allo-
cated or last swapped in. A page with a high card access rate
(CAR, measured as the percentage of the set bits in its CAT)
is deemed to possess good locality and should be accessed
with paging, while a page with a low CAR has poor locality
and should be accessed with object fetching.

The second challenge is how to dynamically switch ac-
cess mechanisms. Atlas uses a read barrier at each smart
pointer dereference. The barrier quickly checks a per-page
path selector flag (PSF) for the remote page to be accessed.
Each PSF is a 1-bit flag, set to either runtime or paging.
runtime indicates that the runtime path should be used to
fetch individual objects (like AIFM), while paging means
that the paging path is taken to fetch an entire page. The PSF
of a page is updated only when the page is evicted based
upon the page’s CAR—it is set to runtime if the page’s
CAR is low, indicating the page exhibits poor locality, and
paging otherwise, indicating good locality.

Although Atlas supports both object fetching and paging
at ingress, it evicts data only at the page granularity at egress,
to reduce the high overhead associated with object-level pro-
filing and LRU. While evicting pages may introduce I/O am-
plification for workloads with poor locality, this impact is in-
significant under Atlas, because accesses in these workloads
would likely go through the object fetching path, which im-
proves locality by moving objects accessed close in time into
contiguous local space. The enhanced locality effectively
mitigates the negative impact of page-level eviction.

To reduce fragmentation resulting from dead objects, At-
las runs concurrent evacuation tasks that periodically move
live objects into contiguous memory space. During each
evacuation, Atlas groups recently-accessed objects into con-
tiguous pages to further improve data locality.

The third challenge is how to synchronize the two access
paths. Since the kernel and the runtime are not coordinated
(e.g., the kernel does not inform the runtime of the start or
the completion of a page-fault handling), special care must
be taken to prevent the two access paths from creating incon-
sistent data copies. In particular, correctness issues may arise
from a set of ingress and egress events (i.e., object-in, page-
in, and page-out) that occur simultaneously. Atlas solves the
problem with a synchronization protocol (see §4.2), imple-
mented with a combination of runtime and kernel support.

Results. We have evaluated Atlas with a set of eight ap-
plications that cover a full range of memory access patterns:
sequential, random, and mixed. Our results show that At-
las enables these applications running on remote memory to
achieve an overall of 1.5× and 3.2× throughput improve-
ment, compared with AIFM [56] and Fastswap [9], respec-
tively. Atlas reduces the tail latency by one and two orders
of magnitude when compared with AIFM and Fastswap. At-
las is available at https://github.com/wangchenxi7/Atlas.

https://github.com/wangchenxi7/Atlas


2 Background on Object Fetching

Object fetching is motivated by two observations on the inef-
ficiencies of paging. First, fetching data at the page granular-
ity often leads to I/O amplification [13]. Second, managing
data in the kernel space is agnostic to program semantics,
resulting in missed optimization opportunities [56, 64, 66].
As such, work has been proposed to manage data with a lan-
guage runtime at a finer-grained object (or cache-line) gran-
ularity [13, 42, 56, 65, 66, 68]. Unlike paging, the runtime
can only manage objects in user space, which results in two
consequences: (1) the runtime must change the virtual ad-
dress of an object when moving it and hence must change
all its pointers; and (2) the runtime must maintain all meta-
data itself (e.g., LRU), which used to be maintained by the
kernel. Here we focus our discussion on AIFM [56]. AIFM
proposes two abstractions for developers to manage remote
memory: remoteable pointer and dereference scope.

Remoteable pointer. AIFM extends the smart pointer ab-
straction of C++ to implement remoteable pointers (RemPtr)
for remote data management. There are two types of
RemPtr: 64-bit unique remoteable pointers (similar to
std::unique_ptr) and 128-bit shared remoteable pointers
(similar to std::shared_ptr). Developers need to explic-
itly declare data as remote type and manage them via the
RemPtr. For example, each unique RemPtr has 64 bits—the
lower 47 bits are used as the virtual address of the data, and
the upper 17 bits are used to record metadata, such as dirty
(D), present (P), hot (H), evacuated (E), etc. When accessing
data via a RemPtr, AIFM checks the metadata of the RemPtr
to detect its status, e.g., checking the P bit to see if the object
is in local memory. Next, AIFM masks the RemPtr to obtain
the actual virtual address.

Dereference scope. Each smart pointer dereference and sub-
sequent raw pointer accesses must be enclosed by a deref-
erence scope, which works as an evacuation fence to guar-
antee correctness. AIFM performs periodical concurrent ob-
ject evacuation that swaps out cold objects to remote mem-
ory and compacts local memory to improve data locality. It
is challenging to move objects when they are being used by
other threads since moving objects requires updating all their
pointers. Smart pointers solve this problem because these
pointers can be recorded in object headers and updated after
moves are conducted. However, an application may read raw
pointers from smart pointers and store them in registers or on
the stack, which cannot be updated by the runtime.

To guarantee correctness for pointer updating, AIFM re-
quires developers to explicitly declare dereference scopes for
each object, which define where raw pointers of the object
may exist. Evacuation of the object never happens concur-
rently with the execution of any of its dereference scopes
that started before the evacuation decision. A dereference
scope serves as a synchronization mechanism between an
event that moves the object and another that uses it.

3 Motivation

We now motivate the necessity of a hybrid data plane. We
first demonstrate the diverse memory access patterns of real-
world cloud applications and explain the underlying reasons.
Next, we compare fetching performance between using a
runtime and the kernel’s paging system. For the runtime
approach, we re-implemented applications with AIFM [56].
For paging, we used Fastswap [9]. Finally, we discuss the
opportunities provided by dynamic path switching.

Diverse memory accesses. Real-world applications exhibit
complicated memory access patterns, which are a combina-
tion of multiple primitive patterns such as sequential, strided,
skewed, and random. Access patterns depend on at least two
factors: (1) the computation model and (2) the data model.
Next we elaborate on these factors:

On one hand, many applications are phase-changing and
each phase follows a distinct computation model. On the
other hand, the same phase may exhibit varied access pat-
terns when processing different data structures.

An example is data-processing applications [75, 77] that
implement MapReduce. We experiment with Metis [43],
a MapReduce framework optimized for multicore architec-
tures, with a Page View Count (PVC) program [28, 55] and
report its page fault sequence in Figure 1(a). Since PVC is
executed with 8 cores, we launch 8 threads for each (Map or
Reduce) phase to exploit data parallelism. During the Map
phase, each thread loads chunks of input data from the disk
and initializes loaded website URLs and users as memory
data. Next, PVC shuffles URLs into different buckets of a
hash table based on their hash values. The Reduce phase
scans each entry to count each URL’s users.

The left/right part of Figure 1(a) illustrates the page fault
sequence of the Map/Reduce phase. The Map phase (left) in-
serts URLs into the hash table, and accesses there are mostly
random. However, given that the dataset used to run this
program is skewed, there are several ranges of sequential ac-
cesses in the Map phase, as highlighted in the boxes (i.e.,
certain hash buckets are much larger than others and hence
traversing these buckets exhibits sequential patterns). Dur-
ing the Reduce phase (right), each task that aggregates users
of URLs scans entries in a bucket sequentially, resulting in a
clear sequential access pattern, as shown in the second (right)
half of Figure 1(a).

Granularity-performance tradeoff. Object fetching mini-
mizes I/O amplification by fetching fine-grained objects [14,
56]. However, compared to paging, object fetching does not
always show clear benefits—for workloads with good local-
ity, data on the same pages are accessed close in time and the
kernel can already effectively and accurately prefetch data.
When benefits are insignificant, the overhead for object-level
memory management stands out. To compare fetching effi-
ciency between the runtime and the kernel, we run the Metis
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Figure 1: Statistics of Metis PageViewCount (MPVC): (a) access patterns, (b) performance comparisons between AIFM and Fastswap, (c)
comparisons of eviction throughput (dotted lines) and CPU usage (crosses and triangles) between AIFM and Fastswap, and (d) access patterns
when input is changed to Wikipedia Italian [6]. For these experiments, 25% of the working set resides in the compute server’s local memory.
Sequential accesses (due to skewness) in the Map phase are highlighted in red boxes in (a), while in (d) such patterns do not exist.

PVC benchmark on AIFM and Fastswap, respectively. Fig-
ure 1(b) reports their performance comparisons.

Since a MapReduce program has clear phases, we broke
down the execution time into Map and Reduce. AIFM out-
performs Fastswap by 1.6× in the Map phase due to object
fetching—most remote accesses in Map are random as words
are inserted into different buckets of the hash map. On the
contrary, AIFM underperforms Fastswap by 3.3× in the Re-
duce phase, which exhibits clear sequential patterns.

Object eviction cost. The main reason why object fetching
underperforms paging for programs with good locality is the
high cost associated with profiling objects and maintaining
object-based LRU for eviction. For example, eviction must
be done quickly as it blocks further memory allocations [54].
As a result, AIFM constantly maintains dozens of profiling/e-
viction threads to track the hotness of (billions of) objects
and evict cold objects. However, if these threads cannot ob-
tain enough CPU resources from the application, they end up
scanning only a small percentage of objects before time runs
out and then evict objects with limited hotness information,
resulting in data thrashing (i.e., hot objects get swapped out
and quickly swapped back in).

Figure 1(c) compares the eviction throughput and CPU uti-
lization for eviction of AIFM and Fastswap during the Re-
duce phase. AIFM continuously performs object-level hot-
ness tracking and eviction with around 200% (up to 350%)
CPU usage in the entire Reduce phase. On the contrary,
Fastswap finishes most of the page eviction task within the
first five seconds and consumes no more than 100% CPU
resources during the eviction. Overall, Fastswap consumes
an order of magnitude less compute (cycles) than AIFM
for eviction over the Reduce phase. Even with significantly
fewer CPU resources, Fastswap’s eviction throughput is still
∼5× higher than that of AIFM, due to the low memory man-
agement cost associated with paging.

Necessity of online profiling and path switching. Offline
profiling techniques [25, 36, 40, 53, 69] were proposed to an-
alyze program semantics and data accesses. However, these
techniques are ineffective in identifying the optimal solution
for a real-world application for two major reasons.

On the one hand, even if the application’s computation
phases may be analyzed by an offline profiling technique,
its access patterns can change dramatically in response to
inputs. As Figure 1(d) demonstrates, when fed with a dif-
ferent dataset (which does not exhibit skewness), the pro-
gram’s access patterns change significantly—e.g., due to the
lack of skewness, the Map phase no longer exhibits sequen-
tial patterns. In fact, for any interactive applications includ-
ing Memcached [5], DataFrame [45], or streaming data sys-
tems [17, 33, 63], their behaviors and access patterns vary
significantly with different user requests and workloads.

On the other hand, as discussed earlier, object fetching
consumes extensive CPU resources. This may be accept-
able when CPU resources are not fully saturated but becomes
problematic as soon as all CPU cores are occupied (e.g., an-
other tenant starts using the server). Clearly, offline profiling
is not able to predict such environmental changes.

These issues necessitate a dynamic technique that can con-
tinuously profile program executions and perform runtime
data path switching as new behaviors and/or environmental
changes are detected. Our main objective is to use object
fetching to minimize I/O amplification and enhance locality,
paving the way for subsequent accesses to operate on data
with established locality and thus benefit from paging that is
considerably more resource efficient.

4 Atlas Design and Implementation
This section presents Atlas’s design. Like AIFM, Atlas re-
quires programs to use smart pointers (i.e., to implement bar-
riers) and declare dereference scopes for objects (inspired by
C++ weak pointers [4] and Folly RCU guards [1]). Objects
are managed by Atlas’s hybrid data plane. Atlas can also
take the same user-defined programming/offloading hints
and object-level prefetching logic as required by AIFM. At-
las uses such hints in the object fetching path.

4.1 Overview

Inspired by the design of the Java heap [50], Atlas divides a
page into cards to enable fine-grained profiling for accesses.
For each page, Atlas builds a card access table (CAT), which
is a bitmap where each set bit represents a card that has been
accessed since the page was allocated or last swapped in.



CATs for contiguous pages are allocated contiguously in a
separate memory space. This design enables not only fine-
grained access profiling, but also simple mapping from a vir-
tual address to its CAT entry—this can be done with efficient
bit-wise operations on the address. Each card represents 16
consecutive bytes, which provides a fine enough granularity
as most objects are at least 16 bytes in our workloads.

Atlas maintains a 1-bit path selector flag (PSF) for each
page, which works as an indicator of the data path for data ac-
cess on the page. A runtime value indicates that data should
be retrieved by the runtime at the object granularity (i.e., run-
time path). A paging value indicates that data should be
paged in by the kernel (i.e., paging path). Atlas updates the
PSF of each page to runtime or paging at the moment
the page is swapped out if its CAR (i.e., the percentage of
the set bits among all bits in a CAT) goes below or above a
threshold (i.e., 80% used in our evaluation, see §5.4).
Ingress. Atlas uses a read barrier that executes at each
smart pointer dereference. The barrier first checks whether
the accessed data is remote. In AIFM, this is done by using a
bit in each pointer to encode the location of the referenced ob-
ject—these pointers are updated once the objects they point
to are swapped in or out. Atlas, however, cannot adopt this
approach due to the use of the hybrid data plane—when data
is paged out, Atlas cannot update any pointers. To solve
the problem without incurring the cost of checking with the
kernel at every read, Atlas leverages hardware transaction
memory and, in particular, Intel’s TSX [30], to run a quick
check—Atlas accesses the address in a hardware transaction,
which aborts if the address is not on a mapped page.

Upon an abort, the barrier reads the PSF for the page to
be accessed and determines which path (runtime v.s. paging)
the access should take. If the runtime path is taken, the ob-
ject is moved (i.e., address changed) to a local page on the
compute server and its pointers are updated; otherwise, the
page containing the object is swapped in as a whole and the
address of the object remains the same (without requiring
pointer updating).
Egress. Given that the majority of the object-fetching over-
head comes from the need to find and evict cold objects, At-
las utilizes a single path, i.e., paging, to swap out data. This
approach achieves a sweet spot in balancing overhead and
benefits—on one hand, it significantly reduces the compute
resource usage for object fetching because of the elimination
of maintaining an object-level LRU; on the other hand, given
that object fetching gradually improves locality (by moving
together objects accessed closely in time), the amount of use-
less data in each swap-out (and thus the I/O amplification) is
reduced progressively during execution.

Another reason to not evict objects individually is that it
can potentially hurt locality—after objects are fetched in,
those that were scattered in remote memory but accessed
together were moved into contiguous local space; however,
these objects may not be evicted at the same time; evicting

them individually would make them go to unrelated locations
in remote memory, disrupting established locality.
Synchronization. Allowing the two paths to co-exist in har-
mony requires overcoming the following three synchroniza-
tion challenges: (1) ingress synchronization between object-
in and page-in, (2) egress synchronization between object-in
and page-out, and (3) move synchronization between object-
in and evacuation. AIFM already solves the third problem
with the declaration of dereference scopes, while the other
two are unique challenges that we target in Atlas.

4.2 Synchronization of the Two Paths

Atlas builds its object fetching path upon the same two ab-
stractions used by AIFM: the smart pointer (which is an
extension of C++ smart pointer) and the dereference scope.
This section elaborates on the synchronization mechanism
between the object fetching path and the paging path.

1 class AtlasUniquePtr<T>{
2 struct AtlasMetadata{
3 unsigned long is_moving : 1;
4 unsigned long access : 1;
5 unsigned long reserve : 2;
6 unsigned long offload : 1;
7 unsigned long size : 12;
8 unsigned long addr : 47;
9 } metadata; // 64 bits

10 AtlasUniquePtr(T* obj);
11 T* get_raw();
12 }

Figure 2: Atlas unique pointer metadata.

Pointer Metadata. Before discussing our barrier logic, we
first present the format of Atlas pointers, which are built on
C++ smart pointers. Atlas uses two types of smart pointers:
unique pointers (similar to std::unique_ptr) and shared
pointers (similar to std::shared_ptr). Figure 2 shows the
layout of an Atlas unique pointer. These fields are added for
the purpose of synchronization and pointer updating.

Each such pointer has 64-bit metadata, in which 47 bits
(addr) store the object’s raw pointer, 12 bits (size) record
its size, 1 bit (access) represents whether the object has
been accessed since the last evacuation (which will be used
by the evacuator to group recently accessed objects, see
§4.3), 1 bit (offload) indicates whether a function is be-
ing invoked on the object on the remote side, and 1 bit
(is_moving) indicates whether the object is being moved
(e.g., due to evacuation); this bit will be used for synchro-
nization between two threads trying to move the same object.
The remaining 2 bits (reserve) are reserved for future use.
Note that 12 bits can represent a size up to 4KB. Objects
larger than that are placed in the huge-object space of the
heap for which paging is the only option. get_raw retrieves
the raw pointer from a smart pointer.

A shared pointer allows aliasing. Atlas treats the first
shared pointer of an object as the main pointer. A shared
pointer’s layout is similar to a unique pointer, except that
it has an additional 8 bytes to chain all pointers—when the
main pointer is being released, Atlas follows the chain to se-



lect a new main pointer. If an object is referenced by shared
pointers, Atlas needs to update all of them (by following the
chain).

Developers need to explicitly declare data types with
smart pointers. Developers can access data with raw (reg-
ular C++) pointers by first retrieving such raw pointers from
smart pointers. However, this can only be done within an
explicitly declared dereference scope. Figure 3 illustrates
an example of retrieving and manipulating data from At-
las smart pointers, confined by a dereference scope. As
discussed in §2, dereference scopes synchronize with ob-
ject migration tasks—once raw pointers are retrieved and
actively used, their objects are not allowed to move, and
vice versa. Atlas executes a pre_scope_barrier and a
post_scope_barrier at the beginning and the end of the
dereference scope, respectively.

1 deref_scope (smart_ptr) {
2 pre_scope_barier(smart_ptr); // Algorithm 1
3 Data * object = smart_ptr.get_raw();
4 /* Operations using the object */
5 ...
6 post_scope_barrier(smart_ptr); // Algorithm 2
7 }

Figure 3: Dereferencing an Atlas unique pointer in a deref scope.

Synchronization invariants. We present a set of high-
level invariants that Atlas maintains to solve the three syn-
chronization problems: (1) preventing an object from be-
ing fetched from the two paths simultaneously (object-in
v.s. page-in), (2) preventing pages containing objects that
were just runtime-fetched from being immediately swapped
out (object-in v.s. page-out), and (3) preventing an object
from being simultaneously runtime-fetched and moved by
the evacuator (object-in v.s. evacuation).

Invariant #1: Object-in v.s. page-in. At any moment, all
data on the same page must go through the same access path
as guided by the page’s PSF. In other words, Atlas prohibits
scenarios where certain requests are served by paging while
others are served by the runtime for the same page. Given
that Atlas changes PSF only at page-out (as opposed to set-
ting it while the page is in local memory), such scenarios can
never occur and this invariant is guaranteed by design.

Note that there is no issue if two threads fetch the same
page from the paging path—the kernel’s swap system guar-
antees only one page can be mapped. Fetching the same
object from two threads with the runtime path is not a con-
cern either: it is a solved problem in the literature of moving
garbage collectors [42] where pointer updating is used as a
synchronization point and only one object is retained.

Invariant #2: Object-in v.s. page-out. Since swap-out
events can occur at any time with the runtime path unin-
formed, Atlas enforces that pages containing objects whose
dereference scopes are actively executed cannot be swapped
out. This is because if such pages are swapped out before
their dereference scopes finish, these objects may be fetched
back in immediately from the runtime path, requiring pointer

Algorithm 1: Atlas Pre-Scope Barrier (Simplified).

/* derefcnt > 0 precludes the page’s swap-out */
1 atom_inc(find_page_meta(addr).derefcnt)
2 if not tsx_check_local(addr) then /* Remote object */
3 if take_runtime_path(addr) then /* Runtime path */
4 new_addr← find_addr(addr, this.size)

/* Inc/dec the new/old page’s derefcnt */
5 atom_inc(find_page_meta(new_addr).derefcnt)
6 atom_dec(find_page_meta(addr).derefcnt)
7 alloc_copy_update(addr, new_addr, this.size)
8 this.metadata.addr← new_addr
9 addr← new_addr

10 end
11 else /* Paging path */
12 * (char*) addr
13 end
14 end

Algorithm 2: Atlas Post-Scope Barrier.

1 atom_dec(find_page_meta(this.addr).derefcnt)

updating. Pointer updating cannot be done when the raw
pointers of these objects are active on the stack. As a re-
sult, these pages cannot be swapped out until none of their
objects are executing their dereference scopes.

Atlas achieves this by maintaining a per-page deref count,
which is incremented when any object on the page enters a
dereference scope and decremented when the scope finishes.
Any page with a non-zero deref count is skipped when the
kernel looks for swap-out victims. Note that this does not cre-
ate much impact on performance because the pages whose
objects are actively used are usually hot pages and unlikely
to be selected as swap-out victims anyway.

One issue that may arise from this protection is a potential
live lock on the object-fetching path: either an ill-defined
large dereference scope or many active dereference scopes
in a parallel application may potentially lead to too much
data getting pinned in local memory, which may result in out-
of-memory errors. To tackle this issue, Atlas monitors the
pinned data and forces the flipping of their containing pages’
PSFs (to use paging) upon memory pressure. Once these
pages are swapped out, they will be paged in—this solves
the problem as page-in does not need pointer updating.

Invariant #3: Dereference scope v.s. evacuation. Evacua-
tion threads may move an object while another thread is ex-
ecuting the object’s dereference scope. This must not occur
because evacuation requires pointer updating, which cannot
be done when a dereference scope is being executed (and raw
pointers are used). To this end, Atlas uses the page’s deref
count to synchronize between evacuation threads and deref-
erence scopes. A non-zero dereference count prevents the
page from being evacuated.

Compared to AIFM, Atlas employs a slightly different def-
inition of dereference scope. AIFM chose to decouple deref-
erence scopes from the barrier—it allows one dereference
scope to cover multiple smart pointer dereferences, serving



as a coarse-grained fence between application threads and
the evacuator. On the contrary, Atlas employs fine-grained
dereference scopes, each of which is associated with one sin-
gle smart pointer dereference. This choice was made based
on our observation of frequent evacuations; using coarse-
grained dereference scopes would require constant synchro-
nizations between application and evacuation threads, lead-
ing to performance and latency impact. Fine-grained deref-
erence scopes not only reduce the degree of blocking but also
help alleviate potential live locks. Although a finer granular-
ity increases barrier overhead, this overhead is often amor-
tized by a large number of raw pointer accesses and compu-
tation within each scope. A detailed overhead analysis can
be found in §5.2 and §5.4.

With the invariants discussed above, we proceed to pre-
senting our barrier logic, which is shown in Algorithm 1 and
Algorithm 2. As illustrated in Figure 3, Atlas executes Algo-
rithm 1 and Algorithm 2 at the beginning and the end of a
dereference scope, respectively.
Pre-scope barrier. Atlas first atomically increments the
deref count for the page containing the object (Line 1). This
indicates that the page has an object whose dereference scope
is being executed, preventing the paging system from swap-
ping out the page (i.e., Invariant #2). This step must be done
before the barrier starts to guarantee that (1) if the page is
local, it cannot be swapped out from this point on, or (2) if
the object is remote, once it is fetched in, its containing page
cannot be swapped out.

Atlas uses Intel’s TSX [31] to efficiently check if the ad-
dress addr is local. Atlas starts an RTM transaction, which
contains nothing but a dereference of the object. If the ob-
ject’s containing page is unmapped, the RTM transaction
will abort with a special status captured by Atlas, which ver-
ifies the status by checking with the kernel. This hardware-
based check is ∼14× faster than a purely software-based ap-
proach that relies on a system call that walks the page table
and checks whether the page is local based on its PTE. A
true value (i.e., the object is local) returned by TSX directs
the execution to exit the barrier immediately. Otherwise, At-
las checks the PSF corresponding to the address (Line 3) to
decide whether this access should take the runtime (Lines
4-9) or the paging path (Line 12).

Using TSX to check object location may introduce false
positives—a transaction may abort even if data is local.
Since such cases are rare (e.g., less than 1/10000 in our exper-
iments), Atlas takes an optimistic approach to handle them.
Upon a TSX abort, Atlas sends an RDMA read to access the
remote object and simultaneously issues a page table walk to
verify the object’s location. If the verification fails (indicat-
ing the object is local), the fetched object is discarded. This
approach introduces only a negligible overhead (i.e., a small
number of unnecessary RDMA reads).
Runtime path. take_runtime_path in Algorithm 1
checks the PSF of the page corresponding to addr and re-

turns true if the PSF is runtime, indicating that object
fetching should be performed. For ease of presentation, Al-
gorithm 1 is significantly simplified to not show details of
how to synchronize between threads to guarantee the absence
of race condition when multiple threads fetching the same
object. Atlas first finds a new address to which the object
will be moved (Line 4). Since this address is on a new page,
before moving the object, the deref count of the new page
must be incremented (Line 5) to ensure that from this point
on, the new page cannot be swapped out until the dereference
scope finishes (i.e., Invariant #2). The barrier also needs to
decrement the deref count of the old page (Line 6) that was
incremented earlier in Line 1.

Next, Atlas fetches the object by allocating a new object
of the same size (using our log-structured allocator discussed
in §4.3), copying the object’s data into the new object, and
updates its pointers (Line 7). Atlas subsequently changes
the addr field of the pointer to the new address (Line 8).
Pointer updating is done by retrieving the object’s pointer
from its header and updating their addresses, in a way sim-
ilar to how it is done in AIFM. If it is a shared pointer, all
other pointers will be retrieved from the main one and up-
dated accordingly. The object’s is_moving field is used to
synchronize between pointer updating events performed by
multiple threads. The synchronization details are omitted for
simplicity. After the object is moved to a local page, future
accesses to the object will follow the PSF of the new page.
Paging path. The paging path simply touches the object
(Line 12) to ensure that the page fault handling is completed
after the execution passes this line.
Post-scope barrier. The post-scope barrier has much sim-
pler logic, as shown in Algorithm 2. All it needs to do is
to atomically decrement the page’s deref count, indicating
the finishing of the dereference scope. When its deref count
becomes zero, this page is subject to swap-out again (i.e., In-
variant #2).

4.3 Memory Management

Atlas’s heap is composed of a normal-object space, a huge-
object space, a metadata space, and an offload space. Atlas
manages the normal-object space via a log-structured alloca-
tor [56, 57] and maintains a background evacuator to reduce
fragmentation by compacting live objects. Atlas does not
handle huge objects that cannot fit into a page, placing them
into the huge-object space and delegating their management
to the kernel directly since they are too large to benefit from
object-level management. Metadata such as CATs are ac-
cessed by both the runtime and paging system, and hence,
it is shared between the user and kernel space. The offload
space stores objects whose functions can be offloaded to the
remote side. We will discuss it shortly.
Object allocation. The log-structured allocator maintains
thread-local allocation buffers (TLAB) to reduce the global
lock contention during parallel object allocation. The TLAB



is managed at the granularity of log segment which is aligned
with a page to guaranteed that no object can go cross the page
boundary. Atlas allocates objects contiguously on the TLAB
as prior research [64, 69] shows that objects allocated close
in time exhibit similar usage patterns. In doing so, objects
with temporal proximity are naturally grouped into the same
log segment (page), enhancing locality.
Metadata allocation. Metadata such as dereference counters
and card tables is allocated in a dedicated metadata space.
Atlas maintains a card table for each page to record the ob-
ject access information. Each card table is a bitmap where
each bit represents a consecutive range of 16 bytes. Our ex-
periments show that the sizes of most objects are larger than
8 bytes, making 16 bytes a natural choice for the card size.
Each card table is allocated and initialized during the allo-
cation of a log segment. It is freed along with the log seg-
ment. The space needed by the card tables is 1/128 of the
total memory. In summary, the space overhead is less than
2%.
Object evacuation. The log-structure allocator [57] supports
defragmentation via a copying-based evacuator. In Atlas,
we extend the evacuator to improve the temporal locality of
pages by grouping hot objects into contiguous log segments
(pages) during the evacuation. The evacuator runs concur-
rently with the application to reduce fragmentation.

The evacuator periodically scans log segments and evac-
uates a log segment with a high garbage ratio by copying
its live objects to a newly allocated target segment. As a
result, the target segment is free of fragmentation, and the
source log segment can be freed right away. When moving
an object, the evacuator maintains its corresponding card ta-
ble values, i.e., if the object was recently accessed on the
source page, the evacuator marks its card bit on the target
page during evacuation. Furthermore, Atlas improves evac-
uation efficiency by prioritizing log segments in local mem-
ory and delaying the processing of remote log segments until
they are accessed or the free space runs out [66].

The Atlas runtime tracks whether an object has been ac-
cessed since the last evacuation via the access bit in the
smart pointer (see Figure 2). This bit is set by the read barrier
when the object is dereferenced and cleared by the evacuator
at the end of each evacuation. The evacuator segregates ob-
jects that have been accessed since the last evacuation into
a set of contiguously allocated log segments. We found this
approach to be particularly effective in improving temporal
locality for real-world workloads with skewness (e.g., 90%
of accesses hit 10% objects). The access bit allows Atlas
to distinguish hot and cold objects in such workloads, lead-
ing to a substantial performance boost. Note that this opera-
tion is significantly more efficient than maintaining an object-
level LRU for eviction. As opposed to ranking objects based
on hotness, Atlas’s access bit simply serves as an evacu-
ation location indicator. Its functionality is similar to CAT
but used differently; CAT is read and cleared by the kernel

at page eviction while the access bit is read and cleared by
the runtime at evacuation.
Computation offloading. As shown in many existing
far-memory systems, such as Semeru [65], Mako [42],
AIFM [56], and Mira [25], offloading memory-intensive op-
erations to the remote side can effectively reduce the data
movement overhead. A unique challenge for Atlas is how
to enable offloading when paging is used. Under paging,
remote memory is managed as a swap partition of a set of
swap slots. These slots are agnostic about the remote server’s
memory addresses. Pointer addresses contained in a page are
with respect to the compute server while the page can reside
at a completely different address on the remote server. This
address mismatch precludes the correct execution of a func-
tion on an object directly on the remote server.

To solve the problem, Atlas uses an approach that is sim-
ilar to Semeru [65]—we reserve a dedicated offload space
in the heap. Developers need to explicitly define remote-
able data structures and functions (which are similar to those
in AIFM). Objects registered as remotable are all allocated
into this space. Pages in this space have guaranteed vir-
tual address alignment between the compute and remote
servers—we modify the paging system to ensure that a page
at a virtual address A on the compute server is guaranteed to
be still at address A on the remote server when evicted. Atlas
requires users to guarantee a remotable data structure cannot
reference a non-remotable object. This property ensures ad-
dress consistency when a function is called remotely.

The offload space is an object-in, page-out space, which
allows objects to be fetched only through the runtime. This
is due to the need to synchronize between the servers for
safe remote execution. When a remote function is being in-
voked on an object, the offload field in its smart pointer is
used for synchronization—the runtime can not fetch the ob-
ject until the remote function is finished (and the offload

bit is cleared). Remotable objects can only be fetched into
the offload space to ensure the above-stated properties.

5 Evaluation
5.1 Setup and Methodology

We wrote 7,675 lines of C/C++ code to implement Atlas’s
runtime library, and added support in the Linux kernel (ver-
sion 5.14-rc5) for page management (e.g., path synchroniza-
tion). We ran experiments with one compute server and one
memory server connected by a 200 Gbps Infiniband switch.
Each server has 2 Intel Xeon Gold 6342 CPUs (24 physical
cores each), 256 GB of memory, and a 100 Gbps Mellanox
ConnectX-5 InfiniBand adapter. All evaluated systems ran
on Ubuntu 18.04. We configured the servers following com-
mon practice for low latency [51], disabling Turbo Boost,
CPU frequency scaling, and transparent huge pages.
Baselines. Atlas was implemented based on Fastswap and
AIFM. For the paging path, Atlas uses unmodified Fastswap



with added tasks of profiling and synchronization. For the
runtime path, Atlas uses AIFM’s ingress algorithm and pag-
ing at egress. For evaluation, we used AIFM [56] and
Fastswap [9] as our baselines for object fetching and paging,
respectively. For Fastswap, we ran the original applications
to avoid unnecessary runtime overhead. For AIFM, we used
the performance-tuned versions of applications, where all op-
timizations were enabled including per-thread access pattern
tracking, object hotness tracking, and non-temporal program-
ming hints [56]. We turned off offloading when evaluating
throughput and latency, leaving its evaluation to §5.4.
Workloads. As shown in Table 1, we evaluated six real-
world applications and two synthetic applications, including
Metis [43]—an optimized MapReduce framework for mul-
ticore architectures, Aspen [17]—a purely functional tree-
based graph processing framework, GraphOne [33]—a data
store for real-time analytics on evolving graphs, as well
as Memcached [5]—an in-memory key-value store. We
ran Memcached with two different workloads: a real-world
workload (MCD-CL) that comes from Meta’s cache sys-
tem CacheLib [12] and a synthetic workload (MCD-U) gen-
erated by YCSB [15] that follows a uniform distribution.
We also employed two synthetic applications developed by
AIFM’s authors to compare Atlas and AIFM. These applica-
tions include one batch application, DataFrame [45], and one
latency-critical application, WebService.

Covering a wide spectrum of domains and memory access
patterns (i.e., sequential, random, skewed, and mixed pat-
terns), these applications can be divided into four categories:

First, both Memcached workloads exhibit random access
patterns, leading to significant I/O amplification under pag-
ing. The real-world workload MCD-CL has a high level of
skewness with churn behaviors. Churn refers to the phe-
nomenon that hot data in the working set changes rapidly
over time. On the contrary, the synthetic workload MCD-U
demonstrates completely random behaviors, with no skew-
ness and hot data. As a result, MCD-CL is more amenable
to Atlas’s dynamic locality improvement than MCD-U.

Second, GraphOne and and Aspen are evolving graph sys-
tems, which are representatives of applications that perform
analytics over frequently updated datasets. GraphOne uses
adjacency lists and edge lists to store an input graph while
Aspen utilizes compressed purely-functional trees to store a
graph, which supports a higher update rate. The working sets
of these applications change continuously. Their accesses
are very complex: the first stage builds the graph in memory,
exhibiting a random pattern. The second stage runs itera-
tive algorithms where the first iteration does not have local-
ity and thus performs random accesses; the subsequent iter-
ations would enjoy better locality if it runs on Atlas, which
dynamically improves the locality during the first iteration.
However, updates to the input graph disrupt the locality and
hence there can also be many random accesses in the mid-
dle of the iterations. We used these two graph frameworks

to evaluate how well Atlas can dynamically adjust the data
layout and improve locality.

Third, Metis (MapReduce) and DataFrame represent bulk
data processing systems with clear phase-changing behav-
iors (discussed in §3). These workloads are used to evalu-
ate whether Atlas can accurately recognize access patterns
and switch to the proper data path. DataFrame is addition-
ally used to evaluate compute offloading due to its memory-
intensive operations (§5.4).

Finally, WebService is an interactive web application
exhibiting mixed access patterns, from random, pointer-
chasing, to sequential accesses.

For Atlas to run these applications, we modified 263 lines
of code for Metis, 278 lines for Aspen, 219 lines for Gra-
phOne, and 391 lines for Memcached; the additional code
was used to declare smart pointers and dereference scopes.
It took one developer a few hours to port each program.
Memory setup. Each application was run with five local
memory configurations: 13%, 25%, 50%, 75% and 100%,
each representing a specific percentage of an application’s
working set that can fit into local memory. These configura-
tions were enforced using cgroup. The first four configura-
tions were employed to evaluate the performance of the three
systems when using different amounts of remote memory,
while the 100% (all local memory) configuration was used to
assess the runtime overhead of Atlas and AIFM, introduced
by the barriers (for smart pointer dereferencing), dereference
trace recording (for object-level prefetching), and evacuation
(for defragmentation), as well as other bookkeeping over-
heads; see Table 2 for more details.

5.2 Throughput

We first measured the throughput of the applications with
varying local memory ratios. Overall, Atlas outperforms
Fastswap and AIFM, respectively, by 3.2× and 1.5×, over
the eight real-world applications using remote memory (from
13% to 75% local memory). When running locally (100% lo-
cal memory), Atlas and AIFM incur an overall overhead of
19.1% and 14.0%, respectively, of which 10.2% and 2.3%
are from the barriers. This section reports the overall perfor-
mance and runtime overhead. We show a detailed overhead
breakdown in §5.4.
MCD-CL and MCD-U. Both workloads were configured
with the same operation ratios, i.e., 87.4% get and 12.6%
set. As shown in Figure 4(a), for a highly-skewed workload
like MCD-CL, both Atlas and AIFM outperform Fastswap
(by 6.4× and 3.2×, respectively). The performance dif-
ference comes primarily from the reduced I/O amplifica-
tion—Fastswap fetches 26× and 30× more data than At-
las and AIFM, respectively, resulting in wasted memory (for
storing unused data) and significantly more swaps. Under
100% local memory, Atlas and AIFM introduce an over-
all overhead of 9.0% and 3.2%, respectively, compared to
Fastswap. The primary source of the overhead is the barri-



Application Dataset Size Characteristics
Memcached CacheLib [5] (MCD-CL) Meta CacheLib [12] 50M records Skewness with churn

Memcached Uniform (MCD-U) Synthetic, uniform distribution [15] 50M records Random access
GraphOne PageRank [33] (GPR) Twitter 2010 [34] 1.5B Edges, 41.7M Vertices Evolving graph
Aspen TriangleCount [17] (ATC) Friendster [72] 1.8B Edges, 65.6M Vertices Evolving graph
Metis Word Count [43] (MWC) The News Crawl Corpus [71] 5.1GB Phase-changing
Metis PageViewCount (MPVC) Wikipedia English [6] 15GB Phase-changing with mixed patterns

DataFrame [45] (DF) NYC Taxi [3] 16 GB Phase-changing with offloading
Web Service [56] (WS) Synthetic [56] 10GB hashmap, 16GB array Mixed patterns with offloading

Table 1: Applications used for our evaluation.
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Figure 4: Throughput comparison between Atlas, Fastswap and AIFM with varying local memory ratios. "All Local" lines represent the
performance of unmodified applications under 100% local memory.

ers, taking 6.2% and 1.5% of the execution time, respectively.
Given that Memcached spends a substantial portion of its ex-
ecution on communication, the barrier overhead, which is
associated with the in-memory processing, is insignificant.

Compared to AIFM, Atlas further improves the perfor-
mance by 1.2×, 1.8×, 2.2×, 2.5×, under the four different
memory configurations (75%, 50%, 25%, and 13%). This
improvement stems from a much higher eviction through-
put (on average 4.6× higher) in Atlas due to the elimination
of object eviction. In addition, Atlas’s concurrent evacua-
tor (§4.3) improves the temporal locality by segregating hot
objects into contiguous pages, leading to an overall of 18%
more accesses that go through the paging path (§5.4). This
result was achieved when AIFM used 20 eviction threads
while Atlas only used one single swap-out thread in the pag-
ing path. MCD-U performs random accesses with no hot
data, hindering opportunities for Atlas to improve locality.
Hence, the usefulness of the hybrid data plane is limited.
However, Atlas still outperforms AIFM by up to 1.4× due
to more efficient eviction, as shown in Figure 4(b).

GPR and ATC. To execute an evolving graph engine, we
divided the input datasets [34] into three batches, which are
incrementally fed to the graph engine. For each batch, the
graph engine conducts the following three steps: load the
updates, update the graph, and execute the analytics.

As Figure 4(c) shows, in the presence of remote mem-
ory, Atlas outperforms AIFM and Fastswap by an average of
1.8× and 3.1×, respectively, on GPR. As stated earlier, graph
updating and the first iteration of analytics exhibit random
access patterns. As such, GPR’s throughput under AIFM is
1.7× higher than under Fastswap. For Atlas, when the ana-
lytics starts, objects are accessed and reordered by the object
fetching in the first few iterations; in the subsequent itera-
tions, pages storing edge objects are switched to using the
paging path due to the gradually established locality. As a re-
sult, up to 82% of pages have their PSFs changed during the
execution (from object fetching to paging), as demonstrated
in Figure 7(b). This improves the analytics throughput.

ATC’s computation stages and access patterns are both
similar to those of GPR. For ATC, the trees storing the graph
data are dynamically reorganized by Atlas’s runtime path,
leading to ∼38% of pages changing their PSFs (from object
fetching to paging). In addition, evacuation improves locality
by segregating hot objects from these trees into a few pages,
reducing remote memory accesses by 24%. As demonstrated
in Figure 4(d), ATC’s overall throughput is 2.0× higher un-
der Atlas than under AIFM.

When running on 100% local memory, Atlas’s barrier
overheads for both GPR and ATC are modest, 8.2% and
4.3%, due to the high ratio between raw pointer accesses and



smart pointer dereferences. Oftentimes, one object derefer-
ence (e.g., obtaining a vertex that contains a series of edges)
is followed by dozens of raw pointer accesses (e.g., to indi-
vidual edges). Each dereference scope contains an average
of 21 raw pointer accesses. In addition, for ATC, the barrier
overhead is further diluted due to its higher computation and
memory access costs (from poor spatial locality).
MWC and MPVC. Figure 4(e) and (f) respectively show
the performance of MWC and MPVC. As discussed in §3,
MPVC exhibits a two-phase behavior that can benefit from
adaptive path switching, leading to a 1.2× and 1.4× im-
provement, compared with AIFM and Fastswap, respectively.
MWC has a similar two-phase behavior with MPVC but ex-
hibits more random accesses in its map phase, resulting in
almost no page that can be flipped to paging. Compared to
AIFM and Fastswap, MWC has 1.2× and 1.5× performance
improvement, respectively.

For these two applications, the runtime overhead is rela-
tively high—32.0% (Atlas) and 19.2% (AIFM), under 100%
local memory. These two Metis workloads are both memory-
intensive—they keep scanning data with high parallelism,
leading to both high barrier overhead and profiling overhead
(e.g., for card profiling and access trace recording, see §5.4).
Atlas’s barrier overhead reaches up to 16.1% and 17.4% for
MPVC and MWC, respectively, which are about 4× higher
than that of AIFM.
DF. DF is a table-structured in-memory data structure with
hundreds of columns and millions of rows, popularized in
Pandas [47]. Users can slice data in different ways and run
various statistics. As Figure 4(g) shows, Atlas outperforms
AIFM by 1.2∼1.4× in the four remote-memory settings. We
ran a client, developed by the AIFM authors, to conduct a se-
ries of Copy and Shuffle operations on DF. Similarly to Metis,
DF demonstrates clear phase-changing behaviors when pro-
cessing different operations—a Copy operation copies data
from a column, exhibiting excellent spatial locality and a
clear sequential pattern, while a Shuffle operation reorders
rows for each column, exhibiting random patterns. Atlas
achieves superior performance to AIFM and Fastswap, due
to its adaptive access path selection.

AIFM suffers a higher runtime overhead (51.4%) com-
pared to Atlas (34.7%) despite having a lighter barrier. The
reason is that AIFM maintains a remote vector on the mem-
ory server for every DataFrame vector to support the eviction
of individual objects with varied sizes. During the execution,
DataFrame vectors keep getting allocated and resized. As a
result, the remote data structure also needs to be frequently
resized to maintain a valid mapping from local objects to
their remote memory locations. Resizing is a heavy opera-
tion as it requires allocating memory and moving all existing
objects. Therefore, it becomes a major source of overhead,
which can take two-thirds of the runtime overhead under
100% local memory. On the other hand, under Atlas, evic-
tion is handled by the Linux kernel at a fixed page size and

there is no need to maintain any remote data structures. Note
that frequent resizing of data structures was not observed in
other applications. For example, for WS, the hash table array
is allocated at the start of the application and its size remains
fixed throughout the execution.
WS. WS is implemented by AIFM’s authors to simulate
a distributed workload. Each client (thread) sends 32 re-
quests to look up keys in an in-memory hash table and
fetches a single 8KB element from an array. This element
is then encrypted with Crypto++ [7] and compressed using
Snappy [22] before being sent back to the client. We use a
26GB dataset for the evaluation, which is consistent with the
dataset used in AIFM [56]. Client requests are generated by
following a Zipfian distribution.

As Figure 4(h) shows, compared to AIFM, Atlas improves
WS’ performance by an average of 1.3× with remote mem-
ory. This is due to an extremely large number of objects on
the LRU list that must be analyzed by AIFM. AIFM’s perfor-
mance degradation is primarily due to the compute resource
contention between application and evacuation threads (dis-
cussed in §3), making it hard for evacuation threads to
quickly identify and evict cold objects. Consequently, AIFM
ends up evicting arbitrary objects to reclaim memory, result-
ing in data thrashing. By using paging for eviction, Atlas
improves the eviction throughput by 5.8×, lifting data evic-
tion efficiency to 5.9 cycles/byte, which is 7.4× higher than
that of AIFM (43.7 cycles/byte).

Atlas and AIFM have relatively low overhead for WS due
to the coarse-grained data fetching (8KB element) and the
subsequent compute-intensive encryption. As a result, Atlas
and AIFM introduce a 10.1% and 1.9% runtime overhead
under 100% local memory, respectively.

5.3 Latency

This section evaluates the latency distribution using the two
latency-critical applications: WS and MCD-CL. The 25% lo-
cal memory ratio was used in these experiments.
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Figure 5: (a) 90th latency as a function of throughput; (b) Latency
CDF under 0.23 MOPS offered throughput. FS stands for Fastswap.
Web Service (WS). Figure 5(a) compares the tail latency
among the three systems. Fastswap’s tail latency rapidly
grows due to page thrashing caused by severe access ampli-
fication. AIFM reduces amplification so that requests are
less blocked by eviction. Despite the reduced amplification,
AIFM still has to rank and evict individual key-value pairs,
and hence the system saturates at 0.36 MOPS.



Atlas fetches individual key-value pairs initially via the
runtime path and places those pairs which belong to the same
request together on the same page (because these KV pairs
are accessed close in time). As the execution progresses,
Atlas switches to paging that can load multiple key-values
pairs at the same time. Meanwhile, page-level eviction con-
tinuously offers a much higher eviction throughput so that it
never blocks swap-ins. As a result, Atlas’s tail latency stays
low until 0.45 MOPS and can finally reach a peak through-
put of 0.57 MOPS. As shown in Figure 5(b), the latencies
of AIFM and Atlas are comparable until the 50th percentile,
where the application starts accessing many remote objects
leading to increased object management overhead. On the
contrary, due to the optimized data layout which enables the
efficient use of paging, Atlas experiences fewer remote ac-
cesses.
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Figure 6: (a) 90th latency as a function of throughput; (b) Latency
CDF under 1 MOPS offered throughput. FS stands for Fastswap.

MCD-CL. Memcached CacheLib is similar to Web Service
as they both access key-value pairs from a hash table. The
difference is that every request key in MDC-CL follows a
Zipfian distribution, as opposed to accessing key-value pairs
always in groups of 32. Figure 6 compares the tail latency
among the three systems. It is clear that Atlas outperforms
the other two systems. In addition to the same reasons ex-
plained above, MCD-CL is a skewed workload and hence a
substantial portion (40%) of the improvement comes from
the evacuation that groups hot objects in contiguous pages,
making these pages amenable to paging.

5.4 Performance Drill Down
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Figure 7: The percentage of pages with PSF=paging in the mem-
ory footprint changes with the elapsed execution time.

Adaptive path switching. To understand the effectiveness
of Atlas’s adaptive path switching, we measured the percent-
age of the pages whose PSF is paging during the execu-
tion. Figure 7 demonstrates how this percentage changes
during the execution for three applications: Memcached
CacheLib (MCD-CL), GraphOne Pagerank (GPR) and Metis
PageViewCount (MPVC). As Figure 7(a) shows, the number

of pages that go through the paging path rises and falls over
the time due to the churn behavior in MCD-CL discussed in
§5.1. Since the workload is highly skewed, most accesses
fall on a small number of hot objects, which stay in local
memory and are moved into contiguous pages (with a high
CAR) until the hot spot shifts.

As discussed in §5.1, the execution of GPR has experi-
enced three batches of updates to the input graph, each of
which contains two steps: graph building and analytics. Dur-
ing graph building, applying edge-level updates exhibits ran-
dom access patterns, which can disrupt locality and leave
many pages with a low CAR; these pages would have to
go through the object fetching path. However, the subse-
quent analytics (like PageRank) runs multiple iterations; At-
las can quickly improve locality in the first few iterations,
making pages turn their PSF to paging in subsequent itera-
tions. This pattern can be clearly seen in Figure 7(b).

MPVC has a clear two-phase behavior (see Figure 1(a))
which can be accurately recognized by Atlas —the number
of pages that go through the paging path increases dramat-
ically as the phase change is detected by Atlas (shown in
Figure 7(c)). To understand the individual contributions of
object fetching and evacuation to the locality, we disabled
the access bit tracking and let the evacuator move live ob-
jects without guidance. This reduces the overall percentage
of pages that go through paging by 4% on average.
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Figure 8: Throughput comparisons of DataFrame (DF) and Web
Service (WS) when Atlas and AIFM enable compute offloading.
CO stands for variants with compute offloading.

Computation offloading. We compared the offloading per-
formance between Atlas and AIFM using DF and WS. Fig-
ure 8 shows the results of Atlas and AIFM with and with-
out offloading. 18 cores were reserved on the remote side
for both Atlas and AIFM, which is consistent with the of-
floading settings used by AIFM [56]. For DF, we offloaded
the memory-intensive operations, i.e., Copy and Shuffle,
to the remote side. For WS, we offloaded the heavyweight
array processing (on the 16GB data array). Compared to the
setting where offloading is disabled (Figure 4 (g) and (h)),
the throughputs of Atlas and AIFM are both dramatically im-
proved (by up to 1.5× and 1.9× for DF, and 1.6× and 2.3×
for WS, respectively), due to reduced remote accesses and
data movement. On the other hand, Atlas and AIFM achieve
comparable performance. This is because Atlas focuses on
fetching efficiency; offloading reduces the need for fetching,
making Atlas’s benefit less significant.



Runtime overhead analysis. To understand the performance
penalty introduced by the runtime of Atlas and AIFM, we
break down and compare the runtime overhead by sources.
When running with all local memory, the runtime overhead
of Atlas and AIFM can be divided into five major compo-
nents, listed in Table 2. Note that the overhead reported here
represents the worst-case scenario for Atlas when compared
against AIFM. When there is remote memory, part of Atlas’s
runtime overhead can be eliminated by switching to the pag-
ing path—dereference trace profiling is not used for paging
as its goal is to analyze dereference traces for prefetching
objects. Meanwhile, AIFM incurs more profiling overheads
that do not exist under the all local memory setting, such as
maintaining the object-level LRU for eviction.

Sources of overhead Functionality Affected systems

Barrier Correctness guarantee, such as Atlas and AIFM
(Dereferencing) location check & synchronization

Card Profiling Offering data path switching hints. Atlas

Dereference Trace Offering object-level Atlas and AIFM
Profiling prefetching hints

Evacuation Defragmentation Atlas and AIFM

Remote Data Structure Managing AIFM
Management object-level eviction

Table 2: Major types of runtime overheads, operations involved in
each type, and their affected systems.
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Figure 9: Runtime overhead breakdown: overhead is calculated as
the ratio between the extra execution time introduced and the exe-
cution time under 100% local memory.

As shown in Figure 9, compared to Fastswap, the extra
tasks in Atlas incur a runtime overhead of 7.7-34.7%, while
AIFM’s overhead is 1.9-51.4%. The overall overheads of the
two systems are 19.1% and 14%, respectively. The primary
source of overhead for both systems is the barrier (except for
DF with AIFM, for which the reasons are explained in §5.2).
Specifically, the Atlas barrier accounts for half of the total
overhead (∼10%), and its cost is 4.4× of that of AIFM. Note
that this overhead correlates with an application’s memory
access behavior: the most memory-intensive applications
suffer the heaviest barrier overhead (MWC, MPVC, DF).

Although Atlas uses a heavier barrier, it underperforms
AIFM by only 4% under 100% local memory. The reason is
three-fold: (1) the barrier overhead is effectively amortized
across the computation and raw pointer accesses (§5.2); (2)
AIFM’s use of coarse-grained dereference scopes leads to

higher synchronization costs than Atlas; and (3) there are
other operations that also contribute to the runtime overhead.
Since the first item has been discussed earlier in this section,
here we elaborate on the second and third items.

The barrier conducts two basic tasks, object location
checking and synchronization. For location checking, Atlas
has a much higher overhead than AIFM due to the use of
TSX to detect an object’s location whereas AIFM checks a
bit on each reference. However, for synchronization, AIFM’s
coarse-grained dereference scopes incur a higher cost, which
effectively reduces the performance gap between the barri-
ers of the two systems. After selecting the victim segments,
AIFM’s evacuator must wait until all application threads exit
their dereference scopes to avoid compacting objects being
accessed through raw pointers. This design does not work
well for big data applications with high object allocation
rates, such as MWC, MPVC and Memcached. On the con-
trary, Atlas’s fine-grained dereference scope design enables
evacuation threads to skip the segments (each aligned to a
page in Atlas) whose deref count is non-zero (indicating
they are being used in active dereference scopes) instead of
blocking the whole evacuation, leading to significantly re-
duced synchronization efforts. In fact, Atlas’s CPU yield rate
caused by synchronization is an order of magnitude lower
than that of AIFM due to our non-blocking design.

Another major source of overhead is the dereference trac-
ing (to provide prefetching hints), accounting for 14% and
19% of the total overhead for Atlas and AIFM, respectively.
Among our applications, DF, MWC, MPVC and GPR use ar-
ray data structures which are amenable to prefetching. As a
result, there is a relatively high tracking overhead (account-
ing for 34% overhead on average) for both Atlas and AIFM.
Other applications such as WS and Memcached use hash
maps and small objects as their data structures, which are not
as amenable to prefetching as arrays. Hence, for most of their
memory accesses, the locations are not tracked and their trac-
ing overhead is much lower. Note that with remote memory,
the dereference tracing overhead is significantly lower under
Atlas than under AIFM because a large amount of data (e.g.,
up to 82% for GPR) goes through the paging path, which
utilizes the lightweight page-level prefetcher.
CAR threshold. Figure 10 shows the influence of CAR
threshold on the throughput of three applications. Picking
the right CAR threshold is a tradeoff between fetching effi-
ciency and resource waste. We used 80% as the CAR thresh-
old for flipping PSF in our evaluation. A higher CAR is
often too conservative. For example, in the case of MCD-
CL, when the threshold is set to 100%, we observed that few
pages can be flipped to paging. Therefore, most remote ob-
jects still have to be fetched individually instead of fetched
in batches with page faults, leading to a 25% decrease in
throughput. On the contrary, a lower CAR may result in
premature use of paging, leading to I/O amplification. As
shown, the best performance is achieved when the threshold
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Figure 10: Sensitivity of the CAR threshold.

is between 80% and 90%. As such, we used the lower bound
80% based on the observation that the bandwidth of a mod-
ern network such as InfiniBand [48] is already high and will
only become higher in the future, making it possible to trans-
fer (slightly) more data with little overhead.
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Figure 11: Normalized throughput of Memcached workloads run-
ning on Atlas and Atlas-LRU under 25% local memory.

Hotness tracking. Atlas uses an access bit on each smart
pointer to segregate hot and cold objects during evacua-
tion, offering benefits to workloads that exhibit skewness.
We evaluated the effectiveness of Atlas’s access bit with
three skewed workloads, i.e., highly-skewed (Meta, MCD-
CL) [2], moderately-skewed (Twitter, MCD-TWT) [73] and
uniformed without skewnewss (MCD-U) [15]. We compared
Atlas with a baseline (Atlas-LRU) equipped with an LRU-
like policy from CacheLib [12], which represents a more ac-
curate approach to identifying hotness.

As shown in Figure 11, Atlas’s single-bit design outper-
forms the LRU-like design by 7.5%, 3.3% and 6.0%, respec-
tively. The LRU-like policy trades compute resources for
accuracy by maintaining the logical ordering of objects via a
linked list. Each dereference triggers a promotion that moves
the object to the head of the LRU list. In order to reduce the
overhead, we adopted flat combining [29] (to reduce thread
lock contention) and ignored the dereferences of an object
within 10s (to reduce promotion frequency for extremely hot
objects) [12]. However, although an LRU-like policy can re-
duce the frequency of remote access, it incurs a maintenance
overhead of up to 9% due to a huge number of objects.

Of course, the more bits used, the higher accuracy they
bring. Atlas allows developers to customize the hotness
tracking policy with the two reserved bits in each smart
pointer (Figure 2). For our applications, we did not observe
significant performance variations between using one and
two access bits—likely the ability of distinguishing hot and
cold objects is not increased much with two access bits.

6 Related Work
Disaggregation. Resource disaggregation has become a
trending architecture for datacenters to improve resource uti-
lization. Its key idea is to break the server hardware bound-

ary and unstrand idle resources of remote servers by lever-
aging advanced network hardware [21, 27]. Existing sys-
tems have demonstrated the viability of disaggregated stor-
age [32, 37], accelerators [49, 62, 74], network [59], and
memory [24, 58]. For a memory-disaggregated system,
memory spans across multiple servers. The efficient data
path of Atlas can speed up the data transfer between servers.

Paging-based far memory. A practical way to deliver far
memory is to leverage the paging system to access far mem-
ory. Google and Meta have reported their successful deploy-
ment of such systems in their datacenters [35, 70]. Many
optimizations to the kernel data path have been proposed for
improved efficiency, including but not limited to bypassing
the block layer [9, 54], prefetching more accurately [44], and
reducing interference [67]. The design of Atlas is orthogo-
nal to the underlying paging systems and can directly benefit
from optimizations within these systems.

Object-based far memory. Many runtime libraries offer new
primitives for object-granularity far memory management,
making them a more efficient alternative for scattered data
on far memory. For example, AIFM [56] proposed remote-
able data structures, FaRM [18] offered key-value interfaces,
and Grappa [46] builds a software distributed memory. At-
las focuses on the cooperative use of its two data paths and
benefits directly from existing optimizations.

Emerging hardware. Emerging hardware technologies un-
lock new opportunities for efficient far memory. Clio [26],
StRoM [60], and RMC [10] offload functionalities to their
customized hardware to reduce network traffic. Finally,
CXL [16, 23, 38, 39, 76] and Project PBerry [13, 14] en-
able far memory access at the cache-line granularity. Atlas
directly benefits from the throughput and latency advance-
ments of new hardware technologies. Besides, for hardware
solutions with a fixed access granularity, Atlas can improve
data locality to improve data transfer efficiency.

7 Conclusion

We present Atlas, a hybrid dataplane that enables efficient far
memory for bulk data and scattered objects simultaneously.
Atlas outperforms both the state-of-the-art object-based and
paging-based far memory systems.
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A Artifact Appendix
A.1 Overview

Atlas is a kernel-runtime co-designed system to enable a hy-
brid remote memory data plane. The artifact includes the
custom Linux kernel and the runtime library to enable Atlas-
managed applications. To run the artifact, two servers with
Intel CPUs connected by InfiniBand are required. The server
running the application is the CPU server, while the other
server providing remote memory is the memory server. De-
tailed instructions can be found in Atlas code repository.

A.2 Checklist

• Hardware: Two servers with Intel CPUs with TSX,
connected by InfiniBand

• Software Environment: Ubuntu 18.04, 20.04 or 22.04,
with the specified version of MLNX_OFED driver and
provided Linux kernel described below

• Public Link to Repository: https://github.
com/wangchenxi7/Atlas

• Code License: MIT License

A.3 Building the Linux Kernel

## all operations are performed on both

servers unless specified

cd linux-5.14-rc5

cp config .config

sudo apt install -y build-essential

bc python2 bison flex libelf-dev

libssl-dev libncurses-dev libncurses5-dev

libncursesw5-dev

./build_kernel.sh build

./build_kernel.sh install

./build_kernel.sh headers-install

## edit GRUB_DEFAULT="Advanced

options for Ubuntu>Ubuntu, with Linux

5.14.0-rc5+", or whatever the new kernel

version code is

## edit GRUB_CMDLINE_LINUX="nokaslr

transparent_hugepage=never

processor.max_cstate=0

intel_idle.max_cstate=0 tsx=on

tsx_async_abort=off mitigations=off"

sudo vim /etc/default/grub

sudo update-grub

sudo reboot

A.4 Setting up InfiniBand Connection

## use Ubuntu 18.04 as an example below

wget https://content.mellanox.com/ofed/

MLNX_OFED-5.5-1.0.3.2/MLNX_OFED_LINUX-5.5-

1.0.3.2-ubuntu18.04-x86_64.tgz

tar xzf MLNX_OFED_LINUX-5.5-1.0.3.2-

ubuntu18.04-x86_64.tgz

cd MLNX_OFED_LINUX-5.5-1.0.3.2-

ubuntu18.04-x86_64

sudo apt install -y bzip2

sudo ./mlnxofedinstall

-add-kernel-support

sudo /etc/init.d/openibd restart

sudo update-rc.d opensmd remove -f

sudo sed "s/# Default-Start:

null/# Default-Start: 2 3 4 5/g"

/etc/init.d/opensmd -i

sudo systemctl enable opensmd

sudo service opensmd start

## assign IPs to InfiniBand interfaces on

both servers

sudo nmtui

A.5 Building Atlas Runtime

## use gcc-9

cd atlas-runtime/third_party

git clone -depth 1 -b

54eaed1d8b56b1aa528be3bdd1877e59c56fa90c

https://github.com/jemalloc/jemalloc.git

cd ../bks_module/remoteswap

## on memory server

cd server && make

## on CPU server

cd client && make

cd ../../bks_drv && make

cd ../.. && mkdir build && cd build

cmake .. && make -j

A.6 Running Atlas Applications

cd atlas-runtime/bks_module/remoteswap

## on memory server

cd server

##./rswap-server <memory server IB ip>

<memory server IB port> <memory pool size

in GBs> <CPU server core count> e.g.,

./rswap-server 172.16.16.1 9999 48 96

## on CPU server

cd client

## edit ‘mem_server_ip‘,

‘mem_server_port‘ and

‘SWAP_PARTITION_SIZE_GB‘ to be consistent

with memory server parameters

vim manage_rswap_client.sh

bash manage_rswap_client.sh install

## run a test

cd atlas-runtime/build/tests/

runtime/unique_ptr

bash test.sh ./unique_ptr_test

https://github.com/wangchenxi7/Atlas
https://github.com/wangchenxi7/Atlas
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